7,591 research outputs found

    Current and future graphics requirements for LaRC and proposed future graphics system

    Get PDF
    The findings of an investigation to assess the current and future graphics requirements of the LaRC researchers with respect to both hardware and software are presented. A graphics system designed to meet these requirements is proposed

    Visual communication in urban planning and urban design

    Get PDF
    This report documents the current status of visual communication in urban design and planning. Visual communication is examined through discussion of standalone and network media, specifically concentrating on visualisation on the World Wide Web(WWW).Firstly, we examine the use of Solid and Geometric Modelling for visualising urban planning and urban design. This report documents and compares examples of the use of Virtual Reality Modelling Language (VRML) and proprietary WWW based Virtual Reality modelling software. Examples include the modelling of Bath and Glasgow using both VRML 1.0 and 2.0. A review is carried out on the use of Virtual Worldsand their role in visualising urban form within multi-user environments. The use of Virtual Worlds is developed into a case study of the possibilities and limitations of Virtual Internet Design Arenas (ViDAs), an initiative undertaken at the Centre for Advanced Spatial Analysis, University College London. The use of Virtual Worlds and their development towards ViDAs is seen as one of the most important developments in visual communication for urban planning and urban design since the development plan.Secondly, photorealistic media in the process of communicating plans is examined.The process of creating photorealistic media is documented, examples of the Virtual Streetscape and Wired Whitehall Virtual Urban Interface System are provided. The conclusion is drawn that although the use of photo-realistic media on the WWW provides a way to visually communicate planning information, its use is limited. The merging of photorealistic media and solid geometric modelling is reviewed in the creation of Augmented Reality. Augmented Reality is seen to provide an important step forward in the ability to quickly and easily visualise urban planning and urban design information.Thirdly, the role of visual communication of planning data through GIS is examined interms of desktop, three dimensional and Internet based GIS systems. The evolution to Internet GIS is seen as a critical component in the development of virtual cities which will allow urban planners and urban designers to visualise and model the complexity of the built environment in networked virtual reality.Finally a viewpoint is put forward of the Virtual City, linking Internet GIS with photorealistic multi-user Virtual Worlds. At present there are constraints on how far virtual cities can be developed, but a view is provided on how these networked virtual worlds are developing to aid visual communication in urban planning and urban design

    Linkage kinematics sketchpad

    Get PDF
    During the design and creation of linkage-type mechanisms, visualization of linkage motion is extremely important. However, there does not appear to be a commercially available computer package for accomplishing visualization interactively. Most linkage design packages allow animation of linkage motion only after tedious part description (and debug) using cryptic input codes. The main thrust of this work has been the development of a prototype interactive graphics (CAD) system aimed at visualizing the motion and mobility of linkage-type mechanisms. The program is called the Linkage Kinematics Sketchpad (LKSP). It is a 2-D color graphics program which allows the user to describe a limited set of linkages (limited by a simplified kinematics analysis procedure) and interactively drive the linkage through its inherent motion cycle (or parts thereof) to visualize mobility . First, a theoretical investigation of previous work in motion analysis and display of animation is presented. This is followed by a description of the LKSP program and an evaluation of the software by this author and others more familiar with linkage design. The system design appears to be adequate, and the software is correct with linkage motions as required. As a result of this work the usefulness of this approach has been determined, and a reasonable methodology has been established. Also, problem areas have been defined, and potentially fruitful areas for future work have been identified. LKSP offers a unique approach to planar linkage design with the most desirable features being the interactive user-computer interface, the ability to create linkages with ease, and the ability to observe linkage motion and potential interference. The most commonly cited shortcoming was the limited set of linkage components which LKSP can handle. Also, there were some aspects of the motion animation which were improved as a result of the user evaluations. Suggestions for future extensions include more user control over the motion animation and more precise input of linkage dimensions

    GIS and urban design

    Get PDF
    Although urban planning has used computer models and information systems sincethe 1950s and architectural practice has recently restructured to the use of computeraideddesign (CAD) and computer drafting software, urban design has hardly beentouched by the digital world. This is about to change as very fine scale spatial datarelevant to such design becomes routinely available, as 2dimensional GIS(geographic information systems) become linked to 3dimensional CAD packages,and as other kinds of photorealistic media are increasingly being fused with thesesoftware. In this chapter, we present the role of GIS in urban design, outlining whatcurrent desktop software is capable of and showing how various new techniques canbe developed which make such software highly suitable as basis for urban design.We first outline the nature of urban design and then present ideas about how varioussoftware might form a tool kit to aid its process. We then look in turn at: utilisingstandard mapping capabilities within GIS relevant to urban design; buildingfunctional extensions to GIS which measure local scale accessibility; providingsketch planning capability in GIS and linking 2-d to 3-d visualisations using low costnet-enabled CAD browsers. We finally conclude with some speculations on thefuture of GIS for urban design across networks whereby a wide range of participantsmight engage in the design process digitally but remotely

    Army-NASA aircrew/aircraft integration program (A3I) software detailed design document, phase 3

    Get PDF
    The capabilities and design approach of the MIDAS (Man-machine Integration Design and Analysis System) computer-aided engineering (CAE) workstation under development by the Army-NASA Aircrew/Aircraft Integration Program is detailed. This workstation uses graphic, symbolic, and numeric prototyping tools and human performance models as part of an integrated design/analysis environment for crewstation human engineering. Developed incrementally, the requirements and design for Phase 3 (Dec. 1987 to Jun. 1989) are described. Software tools/models developed or significantly modified during this phase included: an interactive 3-D graphic cockpit design editor; multiple-perspective graphic views to observe simulation scenarios; symbolic methods to model the mission decomposition, equipment functions, pilot tasking and loading, as well as control the simulation; a 3-D dynamic anthropometric model; an intermachine communications package; and a training assessment component. These components were successfully used during Phase 3 to demonstrate the complex interactions and human engineering findings involved with a proposed cockpit communications design change in a simulated AH-64A Apache helicopter/mission that maps to empirical data from a similar study and AH-1 Cobra flight test

    Simulating Humans: Computer Graphics, Animation, and Control

    Get PDF
    People are all around us. They inhabit our home, workplace, entertainment, and environment. Their presence and actions are noted or ignored, enjoyed or disdained, analyzed or prescribed. The very ubiquitousness of other people in our lives poses a tantalizing challenge to the computational modeler: people are at once the most common object of interest and yet the most structurally complex. Their everyday movements are amazingly uid yet demanding to reproduce, with actions driven not just mechanically by muscles and bones but also cognitively by beliefs and intentions. Our motor systems manage to learn how to make us move without leaving us the burden or pleasure of knowing how we did it. Likewise we learn how to describe the actions and behaviors of others without consciously struggling with the processes of perception, recognition, and language

    inFORM: Dynamic Physical Affordances and Constraints through Shape and Object Actuation

    Get PDF
    Past research on shape displays has primarily focused on rendering content and user interface elements through shape output, with less emphasis on dynamically changing UIs. We propose utilizing shape displays in three different ways to mediate interaction: to facilitate by providing dynamic physical affordances through shape change, to restrict by guiding users with dynamic physical constraints, and to manipulate by actuating physical objects. We outline potential interaction techniques and introduce Dynamic Physical Affordances and Constraints with our inFORM system, built on top of a state-of-the-art shape display, which provides for variable stiffness rendering and real-time user input through direct touch and tangible interaction. A set of motivating examples demonstrates how dynamic affordances, constraints and object actuation can create novel interaction possibilities.National Science Foundation (U.S.). Graduate Research Fellowship (Grant 1122374)Swedish Research Council (Fellowship)Blanceflor Foundation (Scholarship

    BSRLM geometry working group: establishing a professional development network to support teachers using dynamic mathematics software GeoGebra

    No full text
    The embedding of technology into mathematics teaching is known to be a complex process. GeoGebra, an open-source dynamic mathematics software that incorporates geometry and algebra into a single package, is proving popular with teachers - yet solely having access to such technology can be insufficient for the successful integration of technology into teaching. This paper reports on aspects of an NCETM-funded project that involved nine experienced teachers collaborating in developing ways of providing professional development and support for other teachers across England in the use of GeoGebra in teaching mathematics. The participating teachers tried various approaches to better integrate the use of GeoGebra into the mathematics curriculum (especially in geometry) and they designed and led professional development workshops for other teachers. As a result, the project initiated a core group which has started to be a source of support and professional development for other teachers of mathematics in the use of GeoGebra
    • …
    corecore