292 research outputs found

    Methodologies for Solving Integrated Transportation and Scheduling Problems

    Get PDF
    This research proposes novel solution techniques to optimize two real-world problems in the area of scheduling and transportation. We first consider a model for optimizing the operations of dredges. In this problem, scheduling and assignment decisions are integrated across a finite planning horizon. Additional constraints and problem elements explicitly considered include, but are not limited, to environmental work window restrictions, budget limitations, dredge operation rates and schedule-dependent dredge availability. Our approach makes use of Constraint Programming (CP) to obtain quality and robust solutions within an amount of time small enough to be useful to practitioners. The expanded feature set of the methodology presented makes our solution tool the most comprehensive and flexible decision-making framework for dredge scheduling in existence. The second transportation and logistics problem considered in this dissertation considers a unified variation of the Vehicle Routing Problem (VRP). This work offers a powerful yet flexible tool to model and solve real-world problems, each with their specifications, constraints, and requirements. We review existing VRP problems from the literature and propose new VRP variants that differ from the existing ones by the consideration of hours of service regulation on the active and drive hours of drivers in a single or multiple shifts. Real-world instances of these problems consist of thousands of customer locations and hundreds of vehicles. To ensure the quality of the solutions, we compare the performance of our approach with CPLEX on several benchmark instances from the literature. Finally, the third chapter of this work focuses on a comprehensive analysis of the methodology presented in Chapter 4. Specifically, sensitivity analysis regarding the parameters driving the performance of the heuristics is performed. Also, we propose a Genetic Algorithm (GA) to solve the VRP variants in Chapter 3 and provide a computational study of its performance against CPLEX and the approaches in Chapter 3

    Tactical Problems in Vehicle Routing Applications

    Get PDF
    The class of Vehicle Routing Problems (VRPs) is one the most studied topics in the Operations Research community. The vast majority of the published papers focus on single-period problems, with a few branches of the literature considering multiperiod generalisations. All of these problems though, consider a short horizon and aim at optimising the decisions at an operational level, i.e. that will have to be taken in the near future. One step above are tactical problems, i.e. problems concerning a longer time horizon. Tactical problems are of a fundamental importance as they directly influence the daily operations, and therefore a part of the incurred costs, for a long time. The main focus of this thesis is to study tactical problems arising in routing applications. The first problem considered concerns the design of a fleet of vehicles. Transportation providers often have to design a fleet that will be used for daily operations across a long-time span. Trucks used for transportation are very expensive to purchase, maintain or hire. On the other side, the composition of the fleet strongly influences the daily plans, and therefore costs such as fuel or drivers’ wages. Balancing these two components is challenging, and optimisation models can lead to substantial savings or provide a useful basis for informed decisions. The second problem presented focuses on the use of a split deliveries policy in multi-period routing problems. It is known that the combined optimisation of delivery scheduling and routing can be very beneficial, and lead to significant reductions in costs. However, it also adds complexity to the model. The same is true when split deliveries are introduced. The problem studied considers the possibility of splitting the deliveries over different days. An analysis, both theoretical and numerical, of the impact of this approach on the overall cost is provided. Finally, a districting problem for routing applications is considered. These types of problems typically arise when transportation providers wish to increase their service consistency. There are several reasons a company may wish to do so: to strengthen the customer-driver relationship, to increase drivers’ familiarity with their service area, or, to simplify the management of the service area. A typical approach, considered here, is to divide the area under consideration in sectors that will be subsequently assigned to specific drivers. This type of problem is inherently of a multi-period and tactical nature. A new formulation is proposed, integrating standard routing models into the design of territories. This makes it possible to investigate how operational constraints and other requirements, such as having a fair workload division amongst drivers, influence the effectiveness of the approach. An analysis of the cost of districting, in terms of increased routing cost and decreased routing flexibility, and of several operational constraints, is presented

    Biologically-based radiation therapy planning and adjustable robust optimization

    Get PDF
    Radiation therapy is one of the main treatment modalities for various different cancer types. One of the core components of personalized treatment planning is the inclusion of patient-specific biological information in the treatment planning process. Using biological response models, treatment parameters such as the treatment length and dose distribution can be tailored, and mid treatment biomarker information can be used to adapt the treatment during its course. These additional degrees of freedom in treatment planning lead to new mathematical optimization problems. This thesis studies various optimization aspects of biologically-based treatment planning, and focuses on the influence of uncertainty. Adjustable robust optimization is the main technique used to study these problems, and is also studied independently of radiation therapy applications

    Optimization Methods: an Applications-Oriented Primer

    Get PDF
    Effectively sharing resources requires solving complex decision problems. This requires constructing a mathematical model of the underlying system, and then applying appropriate mathematical methods to find an optimal solution of the model, which is ultimately translated into actual decisions. The development of mathematical tools for solving optimization problems dates back to Newton and Leibniz, but it has tremendously accelerated since the advent of digital computers. Today, optimization is an inter-disciplinary subject, lying at the interface between management science, computer science, mathematics and engineering. This chapter offers an introduction to the main theoretical and software tools that are nowadays available to practitioners to solve the kind of optimization problems that are more likely to be encountered in the context of this book. Using, as a case study, a simplified version of the bike sharing problem, we guide the reader through the discussion of modelling and algorithmic issues, concentrating on methods for solving optimization problems to proven optimality

    4th Party Logistics Problem Optimizer

    Get PDF
    This thesis considers a pickup and delivery problem with multiple time windows, a complex cost structure and factory constraints. We formulated the problem as a mathematical model and created an instance generator based on real data. We also implemented a heuristic solution method for the problem and ran extensive statistical tests. The mathematical model shows the complexity of the problem and is implemented in AMPL to give a benchmark for the proposed solution method. The instance generator was created based on real anonymized data from a 4th party logistics (4PL) company. The proposed solution method, called the 4th Party Logis- tics Optimizer, is a meta-heuristic approach with industry specific implementations. The solution method is refined through extensive statistical experiments. The ex- periments determine which parts of the solution method have a significant positive impact on the objective value. This leads to a final composition of our solution method. The final solution method is robustly giving near optimal solutions to re- alistic sized instances in seconds, and is a powerful tool for companies facing the proposed adaptation of the pickup and delivery problem.Masteroppgave i informatikkINF399MAMN-PROGMAMN-IN

    NASA/ESA CV-990 Spacelab Simulation (ASSESS 2)

    Get PDF
    To test the validity of the ARC approach to Spacelab, several missions simulating aspects of Spacelab operations have been conducted as part of the ASSESS Program. Each mission was designed to evaluate potential Shuttle/Spacelab concepts in increasing detail. For this mission, emphasis was placed on development and exercise of management techniques planned for Spacelab using management participants from NASA and ESA who have responsibilities for Spacelab 1 which will be launched in 1980

    The Pickup and Multiple Delivery Problem

    Get PDF
    This thesis presents my work on the pickup and multiple delivery problem, a real-world vehicle routing and scheduling problem with soft time windows, working time and last-in-first-out constraints, developed in collaboration with Transfaction Ltd., who conduct logistics analysis for several large retailers in the UK. A summary of relevant background literature is presented highlighting where my research fits into and contributes to the broader academic landscape. I present a detailed model of the problem and thoroughly analyse a case-study data set, obtaining distributions used for further research. A new variable neighbourhood descent with memory hyper-heuristic is presented and shown to be an effective technique for solving instances of the real-world problem. I analyse strategies for cooperation and competition amongst haulage companies and quantify their effectiveness. The value of time and timely information for planning pickup and delivery requests is investigated. The insights gained are of real industrial relevance, highlighting how a variety of business decisions can produce significant cost savings

    Workforce scheduling and planning : a combinatorial approach

    Get PDF
    This thesis investigates solution methodologies for concrete combinatorial problems in scheduling and planning. In all considered problems, it is assumed that the available information does not change over time; hence these problems have a deterministic structure. The problems studied in this thesis are divided into two groups; \workforce scheduling" and \planning". In workforce scheduling, the center problem is to build a schedule of tasks and technicians. It is assumed that the time line is split into workdays. In every workday, tasks must be grouped as sequences, each being performed by a team of technicians. Skill requirements of every task in a sequence must be met by the assigned team. This scheduling problem with some other aspects is di??cult to solve quickly and e??ciently. We developed a Mixed Integer Programming (MIP) based heuristic approach to tackle this complex scheduling problem. Our MIP model is basically a formulation of the matching problem on bipartite graphs and it enabled us to have a global way of assigning technicians to tasks. It is capable of revising technician-task allocations and performs very well, especially in the case of rare skills. A workday schedule of the aforementioned problem includes many-to-one type workforce assignments. As the second problem in workforce scheduling, stability of these workforce assignments is investigated. The stability de??nition of Gale-Shapley on the Marriage model is extended to the setting of multi-skill workforce assignments. It is shown that ??nding stable assignments is NP-hard. In some special cases stable assignments can be constructed in polynomial time. For the general case, we give linear inequalities of binary variables that describe the set of stable assignments. We propose a MIP model including these linear inequalities. To the best of our knowledge, the Gale-Shapley stability is not studied under the multi-skill workforce scheduling framework so far in the literature. The closed form description of stable assignments is also the ??rst embedding of the Gale-Shapley stability concept into an NP-complete problem. In the second problem group, two vehicle related problems are studied; the "dial a ride problem" and the "vehicle refueling problem". In the former, the goal is to check whether a list of pick-up and delivery tasks can be achieved under several timing constraints. It is shown this feasibility testing can be done in linear time using interval graphs. In the vehicle refueling problem, the goal is to make refueling decisions to reach a destination such that the cost of the travel is minimized. A greedy algorithm is presented to ??nd optimal refueling decisions. Moreover, it is shown that the vehicle refueling problem is equivalent to a ow problem on a special network
    • …
    corecore