54,558 research outputs found

    Optical and RF Metrology for 5G

    Full text link
    Specification standards will soon be available for 5G mobile RF communications. What optical and electrical metrology is needed or available to support the development of the supporting optical communication systems? Device measurement, digital oscilloscope impairments and improving system resolution are discussed.Comment: 2017 IEEE Photonics Society Summer Topical Meeting Series (SUM

    Analysis of component-based approaches toward componentized 5G

    Get PDF
    5G is expected to be modular by design toward autonomic and agile networks. In this regards, the 5G functional architecture is designed as service-based seeking to support the concept of Network Slicing. This leads us to the question: what componentization approach to implement this modular architecture? Is there a componentization approach that is suitable for all the network functions? Which design approach will help to have autonomic and cognitive networks? In this paper we shed the light on the different component-based approaches. In addition, we reviewed the state of the art addressing the applicability of component-based approaches to build autonomic networks. Therefore, we present discussion, comparison and synthesis as input to 5G related activities

    A Prospective Look: Key Enabling Technologies, Applications and Open Research Topics in 6G Networks

    Get PDF
    The fifth generation (5G) mobile networks are envisaged to enable a plethora of breakthrough advancements in wireless technologies, providing support of a diverse set of services over a single platform. While the deployment of 5G systems is scaling up globally, it is time to look ahead for beyond 5G systems. This is driven by the emerging societal trends, calling for fully automated systems and intelligent services supported by extended reality and haptics communications. To accommodate the stringent requirements of their prospective applications, which are data-driven and defined by extremely low-latency, ultra-reliable, fast and seamless wireless connectivity, research initiatives are currently focusing on a progressive roadmap towards the sixth generation (6G) networks. In this article, we shed light on some of the major enabling technologies for 6G, which are expected to revolutionize the fundamental architectures of cellular networks and provide multiple homogeneous artificial intelligence-empowered services, including distributed communications, control, computing, sensing, and energy, from its core to its end nodes. Particularly, this paper aims to answer several 6G framework related questions: What are the driving forces for the development of 6G? How will the enabling technologies of 6G differ from those in 5G? What kind of applications and interactions will they support which would not be supported by 5G? We address these questions by presenting a profound study of the 6G vision and outlining five of its disruptive technologies, i.e., terahertz communications, programmable metasurfaces, drone-based communications, backscatter communications and tactile internet, as well as their potential applications. Then, by leveraging the state-of-the-art literature surveyed for each technology, we discuss their requirements, key challenges, and open research problems

    A prospective look: key enabling technologies, applications and open research topics in 6G networks

    Get PDF
    The fifth generation (5G) mobile networks are envisaged to enable a plethora of breakthrough advancements in wireless technologies, providing support of a diverse set of services over a single platform. While the deployment of 5G systems is scaling up globally, it is time to look ahead for beyond 5G systems. This is mainly driven by the emerging societal trends, calling for fully automated systems and intelligent services supported by extended reality and haptics communications. To accommodate the stringent requirements of their prospective applications, which are data-driven and defined by extremely low-latency, ultra-reliable, fast and seamless wireless connectivity, research initiatives are currently focusing on a progressive roadmap towards the sixth generation (6G) networks, which are expected to bring transformative changes to this premise. In this article, we shed light on some of the major enabling technologies for 6G, which are expected to revolutionize the fundamental architectures of cellular networks and provide multiple homogeneous artificial intelligence-empowered services, including distributed communications, control, computing, sensing, and energy, from its core to its end nodes. In particular, the present paper aims to answer several 6G framework related questions: What are the driving forces for the development of 6G? How will the enabling technologies of 6G differ from those in 5G? What kind of applications and interactions will they support which would not be supported by 5G? We address these questions by presenting a comprehensive study of the 6G vision and outlining seven of its disruptive technologies, i.e., mmWave communications, terahertz communications, optical wireless communications, programmable metasurfaces, drone-based communications, backscatter communications and tactile internet, as well as their potential applications. Then, by leveraging the state-of-the-art literature surveyed for each technology, we discuss the associated requirements, key challenges, and open research problems. These discussions are thereafter used to open up the horizon for future research directions

    Role of satellite communications in 5G ecosystem: perspectives and challenges

    Get PDF
    The next generation of mobile radio communication systems – so-called 5G – will provide some major changes to those generations to date. The ability to cope with huge increases in data traffic at reduced latencies and improved quality of user experience together with a major reduction in energy usage are big challenges. In addition, future systems will need to embody connections to billions of objects – the so-called Internet of Things (IoT) which raises new challenges.Visions of 5G are now available from regions across the world and research is ongoing towards new standards. The consensus is a flatter architecture that adds a dense network of small cells operating in the millimetre wave bands and which are adaptable and software controlled. But what is the place for satellites in such a vision? The chapter examines several potential roles for satellites in 5G including coverage extension, IoT, providing resilience, content caching and multi-cast, and the integrated architecture. Furthermore, the recent advances in satellite communications together with the challenges associated with the use of satellite in the integrated satellite-terrestrial architecture are also discussed

    Private 5G and its Suitability for Industrial Networking

    Get PDF
    5G was and is still surrounded by many promises and buzzwords, such as the famous 1 ms, real-time, and Ultra-Reliable and Low-Latency Communications (URLLC). This was partly intended to get the attention of vertical industries to become new customers for mobile networks, which shall be deployed in their factories. With the allowance of federal agencies, companies deployed their own private 5G networks to test new use cases enabled by 5G. But what has been missing, apart from all the marketing, is the knowledge of what 5G can really do? Private 5G networks are envisioned to enable new use cases with strict latency requirements, such as robot control. This work has examined in great detail the capabilities of the current 5G Release 15 as private network, and in particular its suitability with regard to time-critical communications. For that, a testbed was designed to measure One-Way Delays (OWDs) and Round-Trip Times (RTTs) with high accuracy. The measurements were conducted in 5G Non-Standalone (NSA) and Standalone (SA) net-works and are the first published results. The evaluation revealed results that were not obvious or identified by previous work. For example, a strong impact of the packet rate on the resulting OWD and RTT was found. It was also found that typically 95% of the SA downlink end-to-end packet delays are in the range of 4 ms to 10 ms, indicating a fairly wide spread of packet delays, with the Inter-Packet Delay Variation (IPDV) between consecutive packets distributed in the millisecond range. Surprisingly, it also seems to matter for the RTT from which direction, i.e. Downlink (DL) or Uplink (UL), a round-trip communication was initiated. Another important factor plays especially the Inter-Arrival Time (IAT) of packets on the RTT distribution. These examples from the results found demonstrate the need to critically examine 5G and any successors in terms of their real-time capabilities. In addition to the end-to-end OWD and RTT, the delays caused by 4G and 5G Core processing has been investigated as well. Current state-of-the-art 4G and 5G Core implementations exhibit long-tailed delay distributions. To overcome such limitations, modern packet processing have been evaluated in terms of their respective tail-latency. The hardware-based solution was able to process packets with deterministic delay, but the software-based solutions also achieved soft real-time results. These results allow the selection of the right technology for use cases depending on their tail-latency requirements. In summary, many insights into the suitability of 5G for time-critical communications were gained from the study of the current 5G Release 15. The measurement framework, analysis methods, and results will inform the further development and refinement of private 5G campus networks for industrial use cases
    • …
    corecore