4,362 research outputs found

    Audio-based performance evaluation of squash players

    Get PDF
    In competitive sports it is often very hard to quantify the performance. A player to score or overtake may depend on only millesimal of seconds or millimeters. In racquet sports like tennis, table tennis and squash many events will occur in a short time duration, whose recording and analysis can help reveal the differences in performance. In this paper we show that it is possible to architect a framework that utilizes the characteristic sound patterns to precisely classify the types of and localize the positions of these events. From these basic information the shot types and the ball speed along the trajectories can be estimated. Comparing these estimates with the optimal speed and target the precision of the shot can be defined. The detailed shot statistics and precision information significantly enriches and improves data available today. Feeding them back to the players and the coaches facilitates to describe playing performance objectively and to improve strategy skills. The framework is implemented, its hardware and software components are installed and tested in a squash court

    A survey on the feasibility of sound classification on wireless sensor nodes

    Get PDF
    Wireless sensor networks are suitable to gain context awareness for indoor environments. As sound waves form a rich source of context information, equipping the nodes with microphones can be of great benefit. The algorithms to extract features from sound waves are often highly computationally intensive. This can be problematic as wireless nodes are usually restricted in resources. In order to be able to make a proper decision about which features to use, we survey how sound is used in the literature for global sound classification, age and gender classification, emotion recognition, person verification and identification and indoor and outdoor environmental sound classification. The results of the surveyed algorithms are compared with respect to accuracy and computational load. The accuracies are taken from the surveyed papers; the computational loads are determined by benchmarking the algorithms on an actual sensor node. We conclude that for indoor context awareness, the low-cost algorithms for feature extraction perform equally well as the more computationally-intensive variants. As the feature extraction still requires a large amount of processing time, we present four possible strategies to deal with this problem

    Automatic Framework to Aid Therapists to Diagnose Children who Stutter

    Get PDF
    • …
    corecore