3 research outputs found

    Information transfer and causality in the sensorimotor loop

    Get PDF
    This thesis investigates information-theoretic tools for detecting and describing causal influences in embodied agents. It presents an analysis of philosophical and statistical approaches to causation, and in particular focuses on causal Bayes nets and transfer entropy. It argues for a novel perspective that explicitly incorporates the epistemological role of information as a tool for inference. This approach clarifies and resolves some of the known problems associated with such methods. Here it is argued, through a series of experiments, mathematical results and some philosophical accounts, that universally applicable measures of causal influence strength are unlikely to exist. Instead, the focus should be on the role that information-theoretic tools can play in inferential tests for causal relationships in embodied agents particularly, and dynamical systems in general. This thesis details how these two approaches differ. Following directly from these arguments, the thesis proposes a concept of “hidden” information transfer to describe situations where causal influences passing through a chain of variables may be more easily detected at the end-points than at intermediate nodes. This is described using theoretical examples, and also appears in the information dynamics of computer-simulated and real robots developed herein. Practical examples include some minimal models of agent-environment systems, but also a novel complete system for generating locomotion gait patterns using a biologically-inspired decentralized architecture on a walking robotic hexapod

    From locomotion to cognition: Bridging the gap between reactive and cognitive behavior in a quadruped robot

    Full text link
    The cognitivistic paradigm, which states that cognition is a result of computation with symbols that represent the world, has been challenged by many. The opponents have primarily criticized the detachment from direct interaction with the world and pointed to some fundamental problems (for instance the symbol grounding problem). Instead, they emphasized the constitutive role of embodied interaction with the environment. This has motivated the advancement of synthetic methodologies: the phenomenon of interest (cognition) can be studied by building and investigating whole brain-body-environment systems. Our work is centered around a compliant quadruped robot equipped with a multimodal sensory set. In a series of case studies, we investigate the structure of the sensorimotor space that the application of different actions in different environments by the robot brings about. Then, we study how the agent can autonomously abstract the regularities that are induced by the different conditions and use them to improve its behavior. The agent is engaged in path integration, terrain discrimination and gait adaptation, and moving target following tasks. The nature of the tasks forces the robot to leave the ``here-and-now'' time scale of simple reactive stimulus-response behaviors and to learn from its experience, thus creating a ``minimally cognitive'' setting. Solutions to these problems are developed by the agent in a bottom-up fashion. The complete scenarios are then used to illuminate the concepts that are believed to lie at the basis of cognition: sensorimotor contingencies, body schema, and forward internal models. Finally, we discuss how the presented solutions are relevant for applications in robotics, in particular in the area of autonomous model acquisition and adaptation, and, in mobile robots, in dead reckoning and traversability detection
    corecore