12,697 research outputs found

    Vortex crystals

    Get PDF
    Vortex crystals is one name in use for the subject of vortex patterns that move without change of shape or size. Most of what is known pertains to the case of arrays of parallel line vortices moving so as to produce an essentially two-dimensional flow. The possible patterns of points indicating the intersections of these vortices with a plane perpendicular to them have been studied for almost 150 years. Analog experiments have been devised, and experiments with vortices in a variety of fluids have been performed. Some of the states observed are understood analytically. Others have been found computationally to high precision. Our degree of understanding of these patterns varies considerably. Surprising connections to the zeros of 'special functions' arising in classical mathematical physics have been revealed. Vortex motion on two-dimensional manifolds, such as the sphere, the cylinder (periodic strip) and torus (periodic parallelogram) has also been studied, because of the potential applications, and some results are available regarding the problem of vortex crystals in such geometries. Although a large amount of material is available for review, some results are reported here for the first time. The subject seems pregnant with possibilities for further development.published or submitted for publicationis peer reviewe

    Toward a Reasonable Ethics of Belief

    Get PDF
    Reason has an important role to play in every area of life, including religion. However, Dr. Blanshard’s definition of what is “reasonable” is too narrow. There are many kinds and degrees of evidence. Even if one should not believe contrary to the evidence, or without any evidence, one might be permitted to believe in the absence of perfect evidence. Moreover, what constitutes relevant evidence is not the same in all areas of life. The kind of evidence that is relevant to a belief in physics is not the same as the kind of evidence that is relevant to a belief about the values of music, for example

    Quantum Physics Literacy Aimed at K12 and the General Public

    Get PDF
    Educating K12 students and general public in quantum physics represents an evitable must no longer since quantum technologies are going to revolutionize our lives. Quantum literacy is a formidable challenge and an extraordinary opportunity for a massive cultural uplift, where citizens learn how to engender creativity and practice a new way of thinking, essential for smart community building. Scientific thinking hinges on analyzing facts and creating understanding, and it is then formulated with the dense mathematical language for later fact checking. Within classical physics, learners’ intuition may in principle be educated via classroom demonstrations of everyday-life phenomena. Their understanding can even be framed with the mathematics suited to their instruction degree. For quantum physics, on the contrary, we have no experience of quantum phenomena and the required mathematics is beyond non-expert reach. Therefore, educating intuition needs imagination. Without rooting to experiments and some degree of formal framing, educators face the risk to provide only evanescent tales, often misled, while resorting to familiar analogies. Here, we report on the realization of QPlayLearn, an online platform conceived to explicitly address challenges and opportunities of massive quantum literacy. QPlayLearn’s mission is to provide multilevel education on quantum science and technologies to anyone, regardless of age and background. To this aim, innovative interactive tools enhance the learning process effectiveness, fun, and accessibility, while remaining grounded on scientific correctness. Examples are games for basic quantum physics teaching, on-purpose designed animations, and easy-to-understand explanations on terminology and concepts by global experts. As a strategy for massive cultural change, QPlayLearn offers diversified content for different target groups, from primary school all the way to university physics students. It is addressed also to companies wishing to understand the potential of the emergent quantum industry, journalists, and policymakers needing to seize what quantum technologies are about, as well as all quantum science enthusiasts

    Quantum Physics Literacy Aimed at K12 and the General Public

    Get PDF
    Educating K12 students and general public in quantum physics represents an evitable must no longer since quantum technologies are going to revolutionize our lives. Quantum literacy is a formidable challenge and an extraordinary opportunity for a massive cultural uplift, where citizens learn how to engender creativity and practice a new way of thinking, essential for smart community building. Scientific thinking hinges on analyzing facts and creating understanding, and it is then formulated with the dense mathematical language for later fact checking. Within classical physics, learners' intuition may in principle be educated via classroom demonstrations of everyday-life phenomena. Their understanding can even be framed with the mathematics suited to their instruction degree. For quantum physics, on the contrary, we have no experience of quantum phenomena and the required mathematics is beyond non-expert reach. Therefore, educating intuition needs imagination. Without rooting to experiments and some degree of formal framing, educators face the risk to provide only evanescent tales, often misled, while resorting to familiar analogies. Here, we report on the realization of QPlayLearn, an online platform conceived to explicitly address challenges and opportunities of massive quantum literacy. QPlayLearn's mission is to provide multilevel education on quantum science and technologies to anyone, regardless of age and background. To this aim, innovative interactive tools enhance the learning process effectiveness, fun, and accessibility, while remaining grounded on scientific correctness. Examples are games for basic quantum physics teaching, on-purpose designed animations, and easy-to-understand explanations on terminology and concepts by global experts. As a strategy for massive cultural change, QPlayLearn offers diversified content for different target groups, from primary school all the way to university physics students. It is addressed also to companies wishing to understand the potential of the emergent quantum industry, journalists, and policymakers needing to seize what quantum technologies are about, as well as all quantum science enthusiasts.Peer reviewe

    On the Mathematical Constitution and Explanation of Physical Facts

    Get PDF
    The mathematical nature of modern physics suggests that mathematics is bound to play some role in explaining physical reality. Yet, there is an ongoing controversy about the prospects of mathematical explanations of physical facts and their nature. A common view has it that mathematics provides a rich and indispensable language for representing physical reality but that, ontologically, physical facts are not mathematical and, accordingly, mathematical facts cannot really explain physical facts. In what follows, I challenge this common view. I argue that, in addition to its representational role, in modern physics mathematics is constitutive of the physical. Granted the mathematical constitution of the physical, I propose an account of explanation in which mathematical frameworks, structures, and facts explain physical facts. In this account, mathematical explanations of physical facts are either species of physical explanations of physical facts in which the mathematical constitution of some physical facts in the explanans are highlighted, or simply explanations in which the mathematical constitution of physical facts are highlighted. In highlighting the mathematical constitution of physical facts, mathematical explanations of physical facts deepen and increase the scope of the understanding of the explained physical facts. I argue that, unlike other accounts of mathematical explanations of physical facts, the proposed account is not subject to the objection that mathematics only represents the physical facts that actually do the explanation. I conclude by briefly considering the implications that the mathematical constitution of the physical has for the question of the unreasonable effectiveness of the use of mathematics in physics
    • …
    corecore