3 research outputs found

    Quand le bruit nous éclaire : une étude sur les mécanismes de la perception et de la mémoire à long-terme pour des stimuli auditifs sans signification

    Get PDF
    L'homme peut discriminer les caractéristiques acoustiques de bruits Gaussiens. Les mécanismes de la mémoire sensorielle à long terme ont récemment été étudiés en utilisant des segments de bruit répétés en continu, ou bruits cycliques (CNs) (Agus et al., 2010). Les sujets devaient discriminer des CNs d'autres bruits aléatoires, certains CNs cibles étant présentés plusieurs fois à l'insu des sujets. Une mémorisation à long terme de ces CNs cibles a été démontrée, soulevant des questions quant aux mécanismes mnésiques sous-jacents. Ici, nous avons étudié la robustesse de cette mémoire, en testant la reconnaissance implicite à long terme (1 mois) de CNs cibles transformés : son enroulé sur lui-même (CNs " looped "), ou brouillé (CNs " scrambled ", 10 ou 20 ms). Nous montrons que de très courts segments de bruit peuvent être stockés en mémoire à long terme (10 ms). Le rôle des structures (sous-corticales) dans cette reconnaissance à long terme a ensuite été étudié par IRMf. Nous observons une trace mnésique des CNs cibles impliquant les premiers relais de la voie auditive, en particulier le corps genouillé médian, ainsi que l'hippocampe. Enfin, nous avons exploré les limites de cette mémoire en présentant des CNs cibles de différentes durées dans une oreille, et des bruits purement aléatoires dans l'autre oreille ; les sujets devant localiser le CN. Un mois après, les sujets ont une reconnaissance implicite de CNs cibles aussi brefs que 10 ms, avec seulement 8 répétitions (80ms). Nous démontrons ainsi : 1) la capacité d'apprendre et de conserver en mémoire des segments de bruit aussi courts que 10 ms, 2) une trace mnésique sous-corticale, dans les régions impliqués dans la perception des sons, 3) ces résultats sont en accord avec les performances de reconnaissance prédites par un modèle d'apprentissage STDP.Humans are able to detect acoustic features in Gaussian noise. Researchers recently used repeating noise segments [cyclic noises (CNs), presenting a segment of noise several times back to back] to investigate long-term sensory memory (Agus et al., 2010). They asked participants to discriminate CNs from plain noise, while implicitly presenting them with a few target CNs several times. The results demonstrated long-term memory for such sounds, which have raised several further questions. First, the robustness of memory for implicitly learned Gaussian sounds was tested using a similar paradigm. Participants' recognition memory was tested by presenting them with looped and scrambled (10 or 20-ms bin size) versions of target CNs 4 weeks post-learning. Our results suggest that neurons might code for very small bits of acoustic information (10 ms). Next, the spatial correlates of memory, specifically, the role of subcortical areas in storing auditory patterns was investigated. Using the same paradigm, participants performed the testing session during fMRI scanning. Implicit memory for target CNs was demonstrated and functional contrasts implicate the Medial Geniculate body and hippocampus. Lastly, we explored the mechanisms and resolution limits of this memory. Participants were presented with CNs in one ear and plain noise in the other ear, and had to localize the CN. Implicit and explicit memory for target CNs was tested 4 weeks later. Although participants lacked conscious memory, they were better at localizing target 10-ms CNs than novel CNs, even with 8 repeats (80 ms). Altogether we demonstrate: 1) the ability to learn and store short acoustic patterns (10 ms); 2) this memory is sub-cortical, in regions implicated in perception of sounds; and 3) these results are compatible with an STDP model of learning
    corecore