2,313 research outputs found

    Using case-based approaches to analyse large datasets: a comparison of Ragin's fsQCA and fuzzy cluster analysis

    Get PDF
    The paper undertakes a comparison of Ragin's fuzzy set Qualitative Comparative Analysis with cluster analysis. After describing key features of both methods, it uses a simple invented example to illustrate an important algorithmic difference in the way in which these methods classify cases. It then examines the consequences of this difference via analyses of data previously calibrated as fuzzy sets. The data, taken from the National Child Development Study, concern educational achievement, social class, ability and gender. The classifications produced by fsQCA and fuzzy cluster analysis (FCA) are compared and the reasons for the observed differences between them are discussed. The predictive power of both methods is also compared, employing both correlational and set theoretic comparisons, using highest qualification achieved as the outcome. In the main, using the real data, the two methods are found to produce similar results. A final discussion considers the generalisability or otherwise of this finding

    Robust approach to object recognition through fuzzy clustering and hough transform based methods

    Get PDF
    Object detection from two dimensional intensity images as well as three dimensional range images is considered. The emphasis is on the robust detection of shapes such as cylinders, spheres, cones, and planar surfaces, typically found in mechanical and manufacturing engineering applications. Based on the analyses of different HT methods, a novel method, called the Fast Randomized Hough Transform (FRHT) is proposed. The key idea of FRHT is to divide the original image into multiple regions and apply random sampling method to map data points in the image space into the parameter space or feature space, then obtain the parameters of true clusters. This results in the following characteristics, which are highly desirable in any method: high computation speed, low memory requirement, high result resolution and infinite parameter space. This project also considers use of fuzzy clustering techniques, such as Fuzzy C Quadric Shells (FCQS) clustering algorithm but combines the concept of noise prototype to form the Noise FCQS clustering algorithm that is robust against noise. Then a novel integrated clustering algorithm combining the advantages of FRHT and NFCQS methods is proposed. It is shown to be a robust clustering algorithm having the distinct advantages such as: the number of clusters need not be known in advance, the results are initialization independent, the detection accuracy is greatly improved, and the computation speed is very fast. Recent concepts from robust statistics, such as least trimmed squares estimation (LTS), minimum volume ellipsoid estimator (MVE) and the generalized MVE are also utilized to form a new robust algorithm called the generalized LTS for Quadric Surfaces (GLTS-QS) algorithm is developed. The experimental results indicate that the clustering method combining the FRHT and the GLTS-QS can improve clustering performance. Moreover, a new cluster validity method for circular clusters is proposed by considering the distribution of the points on the circular edge. Different methods for the computation of distance of a point from a cluster boundary, a common issue in all the range image clustering algorithms, are also discussed. The performance of all these algorithms is tested using various real and synthetic range and intensity images. The application of the robust clustering methods to the experimental granular flow research is also included

    Rails Quality Data Modelling via Machine Learning-Based Paradigms

    Get PDF

    Asteroid lightcurves from the Palomar Transient Factory survey: Rotation periods and phase functions from sparse photometry

    Get PDF
    We fit 54,296 sparsely-sampled asteroid lightcurves in the Palomar Transient Factory to a combined rotation plus phase-function model. Each lightcurve consists of 20+ observations acquired in a single opposition. Using 805 asteroids in our sample that have reference periods in the literature, we find the reliability of our fitted periods is a complicated function of the period, amplitude, apparent magnitude and other attributes. Using the 805-asteroid ground-truth sample, we train an automated classifier to estimate (along with manual inspection) the validity of the remaining 53,000 fitted periods. By this method we find 9,033 of our lightcurves (of 8,300 unique asteroids) have reliable periods. Subsequent consideration of asteroids with multiple lightcurve fits indicate 4% contamination in these reliable periods. For 3,902 lightcurves with sufficient phase-angle coverage and either a reliably-fit period or low amplitude, we examine the distribution of several phase-function parameters, none of which are bimodal though all correlate with the bond albedo and with visible-band colors. Comparing the theoretical maximal spin rate of a fluid body with our amplitude versus spin-rate distribution suggests that, if held together only by self-gravity, most asteroids are in general less dense than 2 g/cm3^3, while C types have a lower limit of between 1 and 2 g/cm3^3, in agreement with previous density estimates. For 5-20km diameters, S types rotate faster and have lower amplitudes than C types. If both populations share the same angular momentum, this may indicate the two types' differing ability to deform under rotational stress. Lastly, we compare our absolute magnitudes and apparent-magnitude residuals to those of the Minor Planet Center's nominal G=0.15G=0.15, rotation-neglecting model; our phase-function plus Fourier-series fitting reduces asteroid photometric RMS scatter by a factor of 3.Comment: 35 pages, 29 figures. Accepted 15-Apr-2015 to The Astronomical Journal (AJ). Supplementary material including ASCII data tables will be available through the publishing journal's websit

    Local feature weighting in nearest prototype classification

    Get PDF
    The distance metric is the corner stone of nearest neighbor (NN)-based methods, and therefore, of nearest prototype (NP) algorithms. That is because they classify depending on the similarity of the data. When the data is characterized by a set of features which may contribute to the classification task in different levels, feature weighting or selection is required, sometimes in a local sense. However, local weighting is typically restricted to NN approaches. In this paper, we introduce local feature weighting (LFW) in NP classification. LFW provides each prototype its own weight vector, opposite to typical global weighting methods found in the NP literature, where all the prototypes share the same one. Providing each prototype its own weight vector has a novel effect in the borders of the Voronoi regions generated: They become nonlinear. We have integrated LFW with a previously developed evolutionary nearest prototype classifier (ENPC). The experiments performed both in artificial and real data sets demonstrate that the resulting algorithm that we call LFW in nearest prototype classification (LFW-NPC) avoids overfitting on training data in domains where the features may have different contribution to the classification task in different areas of the feature space. This generalization capability is also reflected in automatically obtaining an accurate and reduced set of prototypes.Publicad

    K-means algorithms for functional data

    Get PDF
    Cluster analysis of functional data considers that the objects on which you want to perform a taxonomy are functions f : X e Rp ↦R and the available information about each object is a sample in a finite set of points f ¼ fðx ; y ÞA X x Rgn . The aim is to infer the meaningful groups by working explicitly with its infinite-dimensional nature. In this paper the use of K-means algorithms to solve this problem is analysed. A comparative study of three K-means algorithms has been conducted. The K-means algorithm for raw data, a kernel K-means algorithm for raw data and a K-means algorithm using two distances for functional data are tested. These distances, called dVn and dϕ, are based on projections onto Reproducing Kernel Hilbert Spaces (RKHS) and Tikhonov regularization theory. Although it is shown that both distances are equivalent, they lead to two different strategies to reduce the dimensionality of the data. In the case of dVn distance the most suitable strategy is Johnson–Lindenstrauss random projections. The dimensionality reduction for dϕ is based on spectral methods
    corecore