4,363 research outputs found

    Seven Defining Features of Terahertz (THz) Wireless Systems: A Fellowship of Communication and Sensing

    Full text link
    Wireless communication at the terahertz (THz) frequency bands (0.1-10THz) is viewed as one of the cornerstones of tomorrow's 6G wireless systems. Owing to the large amount of available bandwidth, THz frequencies can potentially provide wireless capacity performance gains and enable high-resolution sensing. However, operating a wireless system at the THz-band is limited by a highly uncertain channel. Effectively, these channel limitations lead to unreliable intermittent links as a result of a short communication range, and a high susceptibility to blockage and molecular absorption. Consequently, such impediments could disrupt the THz band's promise of high-rate communications and high-resolution sensing capabilities. In this context, this paper panoramically examines the steps needed to efficiently deploy and operate next-generation THz wireless systems that will synergistically support a fellowship of communication and sensing services. For this purpose, we first set the stage by describing the fundamentals of the THz frequency band. Based on these fundamentals, we characterize seven unique defining features of THz wireless systems: 1) Quasi-opticality of the band, 2) THz-tailored wireless architectures, 3) Synergy with lower frequency bands, 4) Joint sensing and communication systems, 5) PHY-layer procedures, 6) Spectrum access techniques, and 7) Real-time network optimization. These seven defining features allow us to shed light on how to re-engineer wireless systems as we know them today so as to make them ready to support THz bands. Furthermore, these features highlight how THz systems turn every communication challenge into a sensing opportunity. Ultimately, the goal of this article is to chart a forward-looking roadmap that exposes the necessary solutions and milestones for enabling THz frequencies to realize their potential as a game changer for next-generation wireless systems.Comment: 26 pages, 6 figure

    Spectrum measurement, sensing, analysis and simulation in the context of cognitive radio

    Get PDF
    The radio frequency (RF) spectrum is a scarce natural resource, currently regulated locally by national agencies. Spectrum has been assigned to different services and it is very difficult for emerging wireless technologies to gain access due to rigid spectmm policy and heavy opportunity cost. Current spectrum management by licensing causes artificial spectrum scarcity. Spectrum monitoring shows that many frequencies and times are unused. Dynamic spectrum access (DSA) is a potential solution to low spectrum efficiency. In DSA, an unlicensed user opportunistically uses vacant licensed spectrum with the help of cognitive radio. Cognitive radio is a key enabling technology for DSA. In a cognitive radio system, an unlicensed Secondary User (SU) identifies vacant licensed spectrum allocated to a Primary User (PU) and uses it without harmful interference to the PU. Cognitive radio increases spectrum usage efficiency while protecting legacy-licensed systems. The purpose of this thesis is to bring together a group of CR concepts and explore how we can make the transition from conventional radio to cognitive radio. Specific goals of the thesis are firstly the measurement of the radio spectrum to understand the current spectrum usage in the Humber region, UK in the context of cognitive radio. Secondly, to characterise the performance of cyclostationary feature detectors through theoretical analysis, hardware implementation, and real-time performance measurements. Thirdly, to mitigate the effect of degradation due to multipath fading and shadowing, the use of -wideband cooperative sensing techniques using adaptive sensing technique and multi-bit soft decision is proposed, which it is believed will introduce more spectral opportunities over wider frequency ranges and achieve higher opportunistic aggregate throughput.Understanding spectrum usage is the first step toward the future deployment of cognitive radio systems. Several spectrum usage measurement campaigns have been performed, mainly in the USA and Europe. These studies show locality and time dependence. In the first part of this thesis a spectrum usage measurement campaign in the Humber region, is reported. Spectrum usage patterns are identified and noise is characterised. A significant amount of spectrum was shown to be underutilized and available for the secondary use. The second part addresses the question: how can you tell if a spectrum channel is being used? Two spectrum sensing techniques are evaluated: Energy Detection and Cyclostationary Feature Detection. The performance of these techniques is compared using the measurements performed in the second part of the thesis. Cyclostationary feature detection is shown to be more robust to noise. The final part of the thesis considers the identification of vacant channels by combining spectrum measurements from multiple locations, known as cooperative sensing. Wideband cooperative sensing is proposed using multi resolution spectrum sensing (MRSS) with a multi-bit decision technique. Next, a two-stage adaptive system with cooperative wideband sensing is proposed based on the combination of energy detection and cyclostationary feature detection. Simulations using the system above indicate that the two-stage adaptive sensing cooperative wideband outperforms single site detection in terms of detection success and mean detection time in the context of wideband cooperative sensing

    A DIVERSE BAND-AWARE DYNAMIC SPECTRUM ACCESS ARCHITECTURE FOR CONNECTIVITY IN RURAL COMMUNITIES

    Get PDF
    Ubiquitous connectivity plays an important role in improving the quality of life in terms of economic development, health and well being, social justice and equity, as well as in providing new educational opportunities. However, rural communities which account for 46% of the world\u27s population lacks access to proper connectivity to avail such societal benefits, creating a huge digital divide between the urban and rural areas. A primary reason is that the Information and Communication Technologies (ICT) providers have less incentives to invest in rural areas due to lack of promising revenue returns. Existing research and industrial attempts in providing connectivity to rural communities suffer from severe drawbacks, such as expensive wireless spectrum licenses and infrastructures, under- and over-provisioning of spectrum resources while handling heterogeneous traffic, lack of novel wireless technologies tailored to the unique challenges and requirements of rural communities (e.g., agricultural fields). Leveraging the recent advances in Dynamic Spectrum Access (DSA) technologies like wide band spectrum analyzers and spectrum access systems, and multi-radio access technologies (multi-RAT), this dissertation proposes a novel Diverse Band-aware DSA (d-DSA) network architecture, that addresses the drawbacks of existing standard and DSA wireless solutions, and extends ubiquitous connectivity to rural communities; a step forward in the direction of the societal and economic improvements in rural communities, and hence, narrowing the digital divide between the rural and urban societies. According to this paradigm, a certain wireless device is equipped with software defined radios (SDRs) that are capable of accessing multiple (un)licensed spectrum bands, such as, TV, LTE, GSM, CBRS, ISM, and possibly futuristic mmWaves. In order to fully exploit the potential of the d-DSA paradigm, while meeting heterogeneous traffic demands that may be generated in rural communities, we design efficient routing strategies and optimization techniques, which are based on a variety of tools such as graph modeling, integer linear programming, dynamic programming, and heuristic design. Our results on realistic traces in a large variety of rural scenarios show that the proposed techniques are able to meet the heterogeneous traffic requirements of rural applications, while ensuring energy efficiency and robustness of the architecture for providing connectivity to rural communities

    Convergent Communication, Sensing and Localization in 6G Systems: An Overview of Technologies, Opportunities and Challenges

    Get PDF
    Herein, we focus on convergent 6G communication, localization and sensing systems by identifying key technology enablers, discussing their underlying challenges, implementation issues, and recommending potential solutions. Moreover, we discuss exciting new opportunities for integrated localization and sensing applications, which will disrupt traditional design principles and revolutionize the way we live, interact with our environment, and do business. Regarding potential enabling technologies, 6G will continue to develop towards even higher frequency ranges, wider bandwidths, and massive antenna arrays. In turn, this will enable sensing solutions with very fine range, Doppler, and angular resolutions, as well as localization to cm-level degree of accuracy. Besides, new materials, device types, and reconfigurable surfaces will allow network operators to reshape and control the electromagnetic response of the environment. At the same time, machine learning and artificial intelligence will leverage the unprecedented availability of data and computing resources to tackle the biggest and hardest problems in wireless communication systems. As a result, 6G will be truly intelligent wireless systems that will provide not only ubiquitous communication but also empower high accuracy localization and high-resolution sensing services. They will become the catalyst for this revolution by bringing about a unique new set of features and service capabilities, where localization and sensing will coexist with communication, continuously sharing the available resources in time, frequency, and space. This work concludes by highlighting foundational research challenges, as well as implications and opportunities related to privacy, security, and trust

    Convergent communication, sensing and localization in 6g systems: An overview of technologies, opportunities and challenges

    Get PDF
    Herein, we focus on convergent 6G communication, localization and sensing systems by identifying key technology enablers, discussing their underlying challenges, implementation issues, and recommending potential solutions. Moreover, we discuss exciting new opportunities for integrated localization and sensing applications, which will disrupt traditional design principles and revolutionize the way we live, interact with our environment, and do business. Regarding potential enabling technologies, 6G will continue to develop towards even higher frequency ranges, wider bandwidths, and massive antenna arrays. In turn, this will enable sensing solutions with very fine range, Doppler, and angular resolutions, as well as localization to cm-level degree of accuracy. Besides, new materials, device types, and reconfigurable surfaces will allow network operators to reshape and control the electromagnetic response of the environment. At the same time, machine learning and artificial intelligence will leverage the unprecedented availability of data and computing resources to tackle the biggest and hardest problems in wireless communication systems. As a result, 6G will be truly intelligent wireless systems that will provide not only ubiquitous communication but also empower high accuracy localization and high-resolution sensing services. They will become the catalyst for this revolution by bringing about a unique new set of features and service capabilities, where localization and sensing will coexist with communication, continuously sharing the available resources in time, frequency, and space. This work concludes by highlighting foundational research challenges, as well as implications and opportunities related to privacy, security, and trust
    • …
    corecore