234 research outputs found

    Well-tuned algorithms for the team orienteering problem with time windows

    Get PDF
    National Research Foundation (NRF) Singapore under Corp Lab @ University scheme; Fujitsu Lt

    An evolutionary algorithm for online, resource constrained, multi-vehicle sensing mission planning

    Full text link
    Mobile robotic platforms are an indispensable tool for various scientific and industrial applications. Robots are used to undertake missions whose execution is constrained by various factors, such as the allocated time or their remaining energy. Existing solutions for resource constrained multi-robot sensing mission planning provide optimal plans at a prohibitive computational complexity for online application [1],[2],[3]. A heuristic approach exists for an online, resource constrained sensing mission planning for a single vehicle [4]. This work proposes a Genetic Algorithm (GA) based heuristic for the Correlated Team Orienteering Problem (CTOP) that is used for planning sensing and monitoring missions for robotic teams that operate under resource constraints. The heuristic is compared against optimal Mixed Integer Quadratic Programming (MIQP) solutions. Results show that the quality of the heuristic solution is at the worst case equal to the 5% optimal solution. The heuristic solution proves to be at least 300 times more time efficient in the worst tested case. The GA heuristic execution required in the worst case less than a second making it suitable for online execution.Comment: 8 pages, 5 figures, accepted for publication in Robotics and Automation Letters (RA-L

    Incorporating A New Class of Uncertainty in Disaster Relief Logistics Planning

    Get PDF
    In recent years, there has been a growing interest among emergency managers in using Social data in disaster response planning. However, the trustworthiness and reliability of posted information are two of the most significant concerns, because much of the user-generated data is initially not verified. Therefore, a key tradeoff exists for emergency managers when considering whether to incorporate Social data in disaster planning efforts. By considering Social data, a larger number of needs can be identified in a shorter amount of time, potentially enabling a faster response and satisfying a class of demand that might not otherwise be discovered. However, some critical resources can be allocated to inaccurate demands in this manner. This dissertation research is dedicated to evaluating this tradeoff by creating routing plans while considering two separate streams of information: (i) unverified data describing demand that is not known with certainty, obtained from Social media platforms and (ii) verified data describing demand known with certainty, obtained from trusted traditional sources (i.e. on the ground assessment teams). These projects extend previous models in the disaster relief routing literature that address uncertainty in demand. More broadly, this research contributes to the body of literature that addresses questions surrounding the usefulness of Social data for response planning

    Solving Multi Objectives Team Orienteering Problem with Time Windows using Multi Integer Linear Programming

    Get PDF
    This study solves tourist trip planning using team orienteering problem with time windows with more than one objective. In MO-TOPTW, besides maximum score, there is minimum time that must be achieved to make sure tourist get effective and efficient routing. Score represent priority to visit the destinations, while time consist of visiting time and traveling time between destinations. Number of routing is determined and the goal is giving the tourist the best routing that fulfill all the constraints. The constraints are time windows and tourist’s budget time. Modification of mathematical programming will be done. We used small case to compare between heuristic procedure to develop the route with optimization. Optimization is implemented using Multi Integer Linear Programming using Lingo. The global optimum of optimization method gives better result than heuristic, with total score higher as 12% and total time lower 7.3%. Because this is NP-hard problem, the running time is 45 minutes 24 seconds, very long time for tourist to wait the result. Further research must be done to faster the process with preserving the best result

    A GRASP-Based Approach for Planning UAV-Assisted Search and Rescue Missions

    Get PDF
    Search and Rescue (SAR) missions aim to search and provide first aid to persons in distress or danger. Due to the urgency of these situations, it is important to possess a system able to take fast action and effectively and efficiently utilise the available resources to conduct the mission. In addition, the potential complexity of the search such as the ruggedness of terrain or large size of the search region should be considered. Such issues can be tackled by using Unmanned Aerial Vehicles (UAVs) equipped with optical sensors. This can ensure the efficiency in terms of speed, coverage and flexibility required to conduct this type of time-sensitive missions. This paper centres on designing a fast solution approach for planning UAV-assisted SAR missions. The challenge is to cover an area where targets (people in distress after a hurricane or earthquake, lost vessels in sea, missing persons in mountainous area, etc.) can be potentially found with a variable likelihood. The search area is modelled using a scoring map to support the choice of the search sub-areas, where the scores represent the likelihood of finding a target. The goal of this paper is to propose a heuristic approach to automate the search process using scarce heterogeneous resources in the most efficient manner

    Orienteering Problem: A survey of recent variants, solution approaches and applications

    Get PDF
    National Research Foundation (NRF) Singapore under International Research Centres in Singapore Funding Initiativ

    Operator Selection in Adaptive Large Neighborhood Search using Deep Reinforcement Learning

    Get PDF
    Large Neighborhood Search (LNS) is a popular heuristic for solving combinatorial optimization problems. LNS iteratively explores the neighborhoods in solution spaces using destroy and repair operators. Determining the best operators for LNS to solve a problem at hand is a labor-intensive process. Hence, Adaptive Large Neighborhood Search (ALNS) has been proposed to adaptively select operators during the search process based on operator performances of the previous search iterations. Such an operator selection procedure is a heuristic, based on domain knowledge, which is ineffective with complex, large solution spaces. In this paper, we address the problem of selecting operators for each search iteration of ALNS as a sequential decision problem and propose a Deep Reinforcement Learning based method called Deep Reinforced Adaptive Large Neighborhood Search. As such, the proposed method aims to learn based on the state of the search which operation to select to obtain a high long-term reward, i.e., a good solution to the underlying optimization problem. The proposed method is evaluated on a time-dependent orienteering problem with stochastic weights and time windows. Results show that our approach effectively learns a strategy that adaptively selects operators for large neighborhood search, obtaining competitive results compared to a state-of-the-art machine learning approach while trained with much fewer observations on small-sized problem instances
    corecore