997 research outputs found

    Asymptotic stability of the multidimensional wave equation coupled with classes of positive-real impedance boundary conditions

    Get PDF
    This paper proves the asymptotic stability of the multidimensional wave equation posed on a bounded open Lipschitz set, coupled with various classes of positive-real impedance boundary conditions, chosen for their physical relevance: time-delayed, standard diffusive (which includes the Riemann-Liouville fractional integral) and extended diffusive (which includes the Caputo fractional derivative). The method of proof consists in formulating an abstract Cauchy problem on an extended state space using a dissipative realization of the impedance operator, be it finite or infinite-dimensional. The asymptotic stability of the corresponding strongly continuous semigroup is then obtained by verifying the sufficient spectral conditions derived by Arendt and Batty (Trans. Amer. Math. Soc., 306 (1988)) as well as Lyubich and V\~u (Studia Math., 88 (1988))

    On the stochastic Cahn-Hilliard equation with a singular double-well potential

    Get PDF
    We prove well-posedness and regularity for the stochastic pure Cahn-Hilliard equation under homogeneous Neumann boundary conditions, with both additive and multiplicative Wiener noise. In contrast with great part of the literature, the double-well potential is treated as generally as possible, its convex part being associated to a multivalued maximal monotone graph everywhere defined on the real line on which no growth nor smoothness assumptions are assumed. The regularity result allows to give appropriate sense to the chemical potential and to write a natural variational formulation of the problem. The proofs are based on suitable monotonicity and compactness arguments in a generalized variational framework.Comment: 37 page

    Optimal distributed control of an extended model of tumor growth with logarithmic potential

    Get PDF
    This paper is intended to tackle the control problem associated with an extended phase field system of Cahn-Hilliard type that is related to a tumor growth model. This system has been investigated in previous contributions from the viewpoint of well-posedness and asymptotic analyses. Here, we aim to extend the mathematical studies around this system by introducing a control variable and handling the corresponding control problem. We try to keep the potential as general as possible, focusing our investigation towards singular potentials, such as the logarithmic one. We establish the existence of optimal control, the Lipschitz continuity of the control-to-state mapping and even its Fr\'echet differentiability in suitable Banach spaces. Moreover, we derive the first-order necessary conditions that an optimal control has to satisfy

    Deep quench approximation and optimal control of general Cahn-Hilliard systems with fractional operators and double obstacle potentials

    Get PDF
    The paper arXiv:1804.11290 contains well-posedness and regularity results for a system of evolutionary operator equations having the structure of a Cahn-Hilliard system. The operators appearing in the system equations were fractional versions in the spectral sense of general linear operators A and B having compact resolvents and are densely defined, unbounded, selfadjoint, and monotone in a Hilbert space of functions defined in a smooth domain. The associated double-well potentials driving the phase separation process modeled by the Cahn-Hilliard system could be of a very general type that includes standard physically meaningful cases such as polynomial, logarithmic, and double obstacle nonlinearities. In the subsequent paper arXiv:1807.03218, an analysis of distributed optimal control problems was performed for such evolutionary systems, where only the differentiable case of certain polynomial and logarithmic double-well potentials could be admitted. Results concerning existence of optimizers and first-order necessary optimality conditions were derived. In the present paper, we complement these results by studying a distributed control problem for such evolutionary systems in the case of nondifferentiable nonlinearities of double obstacle type. For such nonlinearities, it is well known that the standard constraint qualifications cannot be applied to construct appropriate Lagrange multipliers. To overcome this difficulty, we follow here the so-called "deep quench" method. We first give a general convergence analysis of the deep quench approximation that includes an error estimate and then demonstrate that its use leads in the double obstacle case to appropriate first-order necessary optimality conditions in terms of a variational inequality and the associated adjoint state system.Comment: Key words: Fractional operators, Cahn-Hilliard systems, optimal control, double obstacles, necessary optimality condition

    Stochastic Maximum Principle for Optimal Control ofPartial Differential Equations Driven by White Noise

    Full text link
    We prove a stochastic maximum principle ofPontryagin's type for the optimal control of a stochastic partial differential equationdriven by white noise in the case when the set of control actions is convex. Particular attention is paid to well-posedness of the adjoint backward stochastic differential equation and the regularity properties of its solution with values in infinite-dimensional spaces
    • …
    corecore