2,105 research outputs found

    Well-posedness and Stability for Interconnection Structures of Port-Hamiltonian Type

    Full text link
    We consider networks of infinite-dimensional port-Hamiltonian systems Si\mathfrak{S}_i on one-dimensional spatial domains. These subsystems of port-Hamiltonian type are interconnected via boundary control and observation and are allowed to be of distinct port-Hamiltonian orders Ni∈NN_i \in \mathbb{N}. Wellposedness and stability results for port-Hamiltonian systems of fixed order N∈NN \in \mathbb{N} are thereby generalised to networks of such. The abstract theory is applied to some particular model examples.Comment: Submitted to: Control Theory of Infinite-Dimensional System. Workshop on Control Theory of Infinite-Dimensional Systems, Hagen, January 2018. Operator Theory: Advances and Applications. (32 pages, 5 figures

    Stabilization of a linear Korteweg-de Vries equation with a saturated internal control

    Full text link
    This article deals with the design of saturated controls in the context of partial differential equations. It is focused on a linear Korteweg-de Vries equation, which is a mathematical model of waves on shallow water surfaces. In this article, we close the loop with a saturating input that renders the equation nonlinear. The well-posedness is proven thanks to the nonlinear semigroup theory. The proof of the asymptotic stability of the closed-loop system uses a Lyapunov function.Comment: European Control Conference, Jul 2015, Linz, Austri

    Zero Dynamics for Port-Hamiltonian Systems

    Get PDF
    The zero dynamics of infinite-dimensional systems can be difficult to characterize. The zero dynamics of boundary control systems are particularly problematic. In this paper the zero dynamics of port-Hamiltonian systems are studied. A complete characterization of the zero dynamics for a port-Hamiltonian systems with invertible feedthrough as another port-Hamiltonian system on the same state space is given. It is shown that the zero dynamics for any port-Hamiltonian system with commensurate wave speeds are well-defined, and are also a port-Hamiltonian system. Examples include wave equations with uniform wave speed on a network. A constructive procedure for calculation of the zero dynamics, that can be used for very large system order, is provided.Comment: 17 page

    Global stabilization of a Korteweg-de Vries equation with saturating distributed control

    Full text link
    This article deals with the design of saturated controls in the context of partial differential equations. It focuses on a Korteweg-de Vries equation, which is a nonlinear mathematical model of waves on shallow water surfaces. Two different types of saturated controls are considered. The well-posedness is proven applying a Banach fixed point theorem, using some estimates of this equation and some properties of the saturation function. The proof of the asymptotic stability of the closed-loop system is separated in two cases: i) when the control acts on all the domain, a Lyapunov function together with a sector condition describing the saturating input is used to conclude on the stability, ii) when the control is localized, we argue by contradiction. Some numerical simulations illustrate the stability of the closed-loop nonlinear partial differential equation. 1. Introduction. In recent decades, a great effort has been made to take into account input saturations in control designs (see e.g [39], [15] or more recently [17]). In most applications, actuators are limited due to some physical constraints and the control input has to be bounded. Neglecting the amplitude actuator limitation can be source of undesirable and catastrophic behaviors for the closed-loop system. The standard method to analyze the stability with such nonlinear controls follows a two steps design. First the design is carried out without taking into account the saturation. In a second step, a nonlinear analysis of the closed-loop system is made when adding the saturation. In this way, we often get local stabilization results. Tackling this particular nonlinearity in the case of finite dimensional systems is already a difficult problem. However, nowadays, numerous techniques are available (see e.g. [39, 41, 37]) and such systems can be analyzed with an appropriate Lyapunov function and a sector condition of the saturation map, as introduced in [39]. In the literature, there are few papers studying this topic in the infinite dimensional case. Among them, we can cite [18], [29], where a wave equation equipped with a saturated distributed actuator is studied, and [12], where a coupled PDE/ODE system modeling a switched power converter with a transmission line is considered. Due to some restrictions on the system, a saturated feedback has to be designed in the latter paper. There exist also some papers using the nonlinear semigroup theory and focusing on abstract systems ([20],[34],[36]). Let us note that in [36], [34] and [20], the study of a priori bounded controller is tackled using abstract nonlinear theory. To be more specific, for bounded ([36],[34]) and unbounded ([34]) control operators, some conditions are derived to deduce, from the asymptotic stability of an infinite-dimensional linear system in abstract form, the asymptotic stability when closing the loop with saturating controller. These articles use the nonlinear semigroup theory (see e.g. [24] or [1]). The Korteweg-de Vries equation (KdV for short)Comment: arXiv admin note: text overlap with arXiv:1609.0144
    • …
    corecore