81 research outputs found

    Well-posedness and long-time behavior for a nonstandard viscous Cahn-Hilliard system

    Get PDF
    We study a diffusion model of phase field type, consisting of a system of two partial differential equations encoding the balances of microforces and microenergy; the two unknowns are the order parameter and the chemical potential. By a careful development of uniform estimates and the deduction of certain useful boundedness properties, we prove existence and uniqueness of a global-in-time smooth solution to the associated initial/boundary-value problem; moreover, we give a description of the relative omega-limit set.Comment: Key words: Cahn-Hilliard equation, phase field model, well-posedness, long-time behavio

    On an application of Tikhonov's fixed point theorem to a nonlocal Cahn-Hilliard type system modeling phase separation

    Get PDF
    This paper investigates a nonlocal version of a model for phase separation on an atomic lattice that was introduced by P. Podio-Guidugli in Ric. Mat. 55 (2006) 105-118. The model consists of an initial-boundary value problem for a nonlinearly coupled system of two partial differential equations governing the evolution of an order parameter and the chemical potential. Singular contributions to the local free energy in the form of logarithmic or double-obstacle potentials are admitted. In contrast to the local model, which was studied by P. Podio-Guidugli and the present authors in a series of recent publications, in the nonlocal case the equation governing the evolution of the order parameter contains in place of the Laplacian a nonlocal expression that originates from nonlocal contributions to the free energy and accounts for possible long-range interactions between the atoms. It is shown that just as in the local case the model equations are well posed, where the technique of proving existence is entirely different: it is based on an application of Tikhonov's fixed point theorem in a rather unusual separable and reflexive Banach space.Comment: The paper is dedicated to our friend Paolo Podio-Guidugli on the occasion of his 75th birthday with best wishe

    Limiting problems for a nonstandard viscous Cahn--Hilliard system with dynamic boundary conditions

    Get PDF
    This note is concerned with a nonlinear diffusion problem of phase-field type, consisting of a parabolic system of two partial differential equations, complemented by boundary and initial conditions. The system arises from a model of two-species phase segregation on an atomic lattice and was introduced by Podio-Guidugli in Ric. Mat. 55 (2006), pp.105--118. The two unknowns are the phase parameter and the chemical potential. In contrast to previous investigations about this PDE system, we consider here a dynamic boundary condition for the phase variable that involves the Laplace-Beltrami operator and models an additional nonconserving phase transition occurring on the surface of the domain. We are interested to some asymptotic analysis and first discuss the asymptotic limit of the system as the viscosity coefficient of the order parameter equation tends to 0: the convergence of solutions to the corresponding solutions for the limit problem is proven. Then, we study the long-time behavior of the system for both problems, with positive or zero viscosity coefficient, and characterize the omega-limit set in both cases

    On the longtime behavior of a viscous Cahn-Hilliard system with convection and dynamic boundary conditions

    Get PDF
    In this paper, we study the longtime asymptotic behavior of a phase separation process occurring in a three-dimensional domain containing a fluid flow of given velocity. This process is modeled by a viscous convective Cahn-Hilliard system, which consists of two nonlinearly coupled second-order partial differential equations for the unknown quantities, the chemical potential and an order parameter representing the scaled density of one of the phases. In contrast to other contributions, in which zero Neumann boundary conditions were are assumed for both the chemical potential and the order parameter, we consider the case of dynamic boundary conditions, which model the situation when another phase transition takes place on the boundary. The phase transition processes in the bulk and on the boundary are driven by free energies functionals that may be nondifferentiable and have derivatives only in the sense of (possibly set-valued) subdifferentials. For the resulting initial-boundary value system of Cahn-Hilliard type, general well-posedness results have been established in a recent contribution by the same authors. In the present paper, we investigate the asymptotic behavior of the solutions as times approaches infinity. More precisely, we study the ω\omega-limit (in a suitable topology) of every solution trajectory. Under the assumptions that the viscosity coefficients are strictly positive and that at least one of the underlying free energies is differentiable, we prove that the ω\omega-limit is meaningful and that all of its elements are solutions to the corresponding stationary system, where the component representing the chemical potential is a constant.Comment: Key words: Cahn-Hilliard systems, convection, dynamic boundary conditions, well-posedness, asymptotic behavior, omega-limit. arXiv admin note: text overlap with arXiv:1704.0533

    Analysis of a time discretization scheme for a nonstandard viscous Cahn-Hilliard system

    Get PDF
    In this paper we propose a time discretization of a system of two parabolic equations describing diffusion-driven atom rearrangement in crystalline matter. The equations express the balances of microforces and microenergy; the two phase fields are the order parameter and the chemical potential. The initial and boundary-value problem for the evolutionary system is known to be well posed. Convergence of the discrete scheme to the solution of the continuous problem is proved by a careful development of uniform estimates, by weak compactness and a suitable treatment of nonlinearities. Moreover, for the difference of discrete and continuous solutions we prove an error estimate of order one with respect to the time step.Comment: Key words: Cahn-Hilliard equation, phase field model, time discretization, convergence, error estimate

    Longtime behavior for a generalized Cahn-Hilliard system with fractional operators

    Get PDF
    In this contribution, we deal with the longtime behavior of the solutions to the fractional variant of the Cahn-Hilliard system, with possibly singular potentials, that we have recently investigated in the paper `Well-posedness and regularity for a generalized fractional Cahn-Hilliard system' (see arXiv:1804.11290). More precisely, we study the omega-limit of the phase parameter and characterize it completely. Our characterization depends on the first eigenvalue of one of the operators involved: if it is positive, then the chemical potential vanishes at infinity and every element of the omega-limit is a stationary solution to the phase equation; if, instead, the first eigenvalue is 0, then every element of the omega-limit satisfies a problem containing a real function related to the chemical potential. Such a function is nonunique and time dependent, in general, as we show by an example. However, we give sufficient conditions in order that this function be uniquely determined and constant.Comment: Key words: Fractional operators, Cahn-Hilliard systems, longtime behavio

    Global existence for a nonstandard viscous Cahn--Hilliard system with dynamic boundary condition

    Get PDF
    In this paper, we study a model for phase segregation taking place in a spatial domain that was introduced by Podio-Guidugli in Ric. Mat. 55 (2006), pp. 105-118. The model consists of a strongly coupled system of nonlinear parabolic differential equations, in which products between the unknown functions and their time derivatives occur that are difficult to handle analytically. In contrast to the existing literature about this PDE system, we consider here a dynamic boundary condition involving the Laplace-Beltrami operator for the order parameter. This boundary condition models an additional nonconserving phase transition occurring on the surface of the domain. Different well-posedness results are shown, depending on the smoothness properties of the involved bulk and surface free energies

    Distributed optimal control of a nonstandard nonlocal phase field system with double obstacle potential

    Get PDF
    This paper is concerned with a distributed optimal control problem for a nonlocal phase field model of Cahn-Hilliard type, which is a nonlocal version of a model for two-species phase segregation on an atomic lattice under the presence of diffusion. The local model has been investigated in a series of papers by P. Podio-Guidugli and the present authors; the nonlocal model studied here consists of a highly nonlinear parabolic equation coupled to an ordinary differential inclusion of subdifferential type. The inclusion originates from a free energy containing the indicator function of the interval in which the order parameter of the phase segregation attains its values. It also contains a nonlocal term modeling long-range interactions. Due to the strong nonlinear couplings between the state variables (which even involve products with time derivatives), the analysis of the state system is difficult. In addition, the presence of the differential inclusion is the reason that standard arguments of optimal control theory cannot be applied to guarantee the existence of Lagrange multipliers. In this paper, we employ recent results proved for smooth logarithmic potentials and perform a so-called `deep quench' approximation to establish existence and first-order necessary optimality conditions for the nonsmooth case of the double obstacle potential.Comment: Key words: distributed optimal control, phase field systems, double obstacle potentials, nonlocal operators, first-order necessary optimality conditions. The interested reader can also see the related preprints arXiv:1511.04361 and arXiv:1605.07801 whose results are recalled and used for the analysis carried out in this pape

    Global existence for a nonstandard viscous Cahn--Hilliard system with dynamic boundary condition

    Get PDF
    In this paper, we study a model for phase segregation taking place in a spatial domain that was introduced by Podio-Guidugli in Ric. Mat. 55 (2006), pp. 105-118. The model consists of a strongly coupled system of nonlinear parabolic differential equations, in which products between the unknown functions and their time derivatives occur that are difficult to handle analytically. In contrast to the existing literature about this PDE system, we consider here a dynamic boundary condition involving the Laplace-Beltrami operator for the order parameter. This boundary condition models an additional nonconserving phase transition occurring on the surface of the domain. Different well-posedness results are shown, depending on the smoothness properties of the involved bulk and surface free energies
    corecore