233 research outputs found

    Well-partial-orderings and the big Veblen number

    Get PDF
    In this article we characterize a countable ordinal known as the big Veblen number in terms of natural well-partially ordered tree-like structures. To this end, we consider generalized trees where the immediate subtrees are grouped in pairs with address-like objects. Motivated by natural ordering properties, extracted from the standard notations for the big Veblen number, we investigate different choices for embeddability relations on the generalized trees. We observe that for addresses using one finite sequence only, the embeddability coincides with the classical tree-embeddability, but in this article we are interested in more general situations (transfinite addresses and well-partially ordered addresses). We prove that the maximal order type of some of these new embeddability relations hit precisely the big Veblen ordinal ϑΩΩ . Somewhat surprisingly, changing a little bit the well-partially ordered addresses (going from multisets to finite sequences), the maximal order type hits an ordinal which exceeds the big Veblen number by far, namely ϑΩΩΩ . Our results contribute to the research program (originally initiated by Diana Schmidt) on classifying properties of natural well-orderings in terms of order-theoretic properties of the functions generating the orderings

    The Veblen functions for computability theorists

    Full text link
    We study the computability-theoretic complexity and proof-theoretic strength of the following statements: (1) "If X is a well-ordering, then so is epsilon_X", and (2) "If X is a well-ordering, then so is phi(alpha,X)", where alpha is a fixed computable ordinal and phi the two-placed Veblen function. For the former statement, we show that omega iterations of the Turing jump are necessary in the proof and that the statement is equivalent to ACA_0^+ over RCA_0. To prove the latter statement we need to use omega^alpha iterations of the Turing jump, and we show that the statement is equivalent to Pi^0_{omega^alpha}-CA_0. Our proofs are purely computability-theoretic. We also give a new proof of a result of Friedman: the statement "if X is a well-ordering, then so is phi(X,0)" is equivalent to ATR_0 over RCA_0.Comment: 26 pages, 3 figures, to appear in Journal of Symbolic Logi

    Connecting the two worlds: well-partial-orders and ordinal notation systems

    Get PDF
    Kruskal claims in his now-classical 1972 paper [47] that well-partial-orders are among the most frequently rediscovered mathematical objects. Well partial-orders have applications in many fields outside the theory of orders: computer science, proof theory, reverse mathematics, algebra, combinatorics, etc. The maximal order type of a well-partial-order characterizes that order’s strength. Moreover, in many natural cases, a well-partial-order’s maximal order type can be represented by an ordinal notation system. However, there are a number of natural well-partial-orders whose maximal order types and corresponding ordinal notation systems remain unknown. Prominent examples are Friedman’s well-partial-orders of trees with the gap-embeddability relation [76]. The main goal of this dissertation is to investigate a conjecture of Weiermann [86], thereby addressing the problem of the unknown maximal order types and corresponding ordinal notation systems for Friedman’s well-partial orders [76]. Weiermann’s conjecture concerns a class of structures, a typical member of which is denoted by T (W ), each are ordered by a certain gapembeddability relation. The conjecture indicates a possible approach towards determining the maximal order types of the structures T (W ). Specifically, Weiermann conjectures that the collapsing functions #i correspond to maximal linear extensions of these well-partial-orders T (W ), hence also that these collapsing functions correspond to maximal linear extensions of Friedman’s famous well-partial-orders

    What\u27s So Special About Kruskal\u27s Theorem and the Ordinal \u3cem\u3eT\u3c/em\u3e\u3csub\u3eo\u3c/sub\u3e? A Survey of Some Results in Proof Theory

    Get PDF
    This paper consists primarily of a survey of results of Harvey Friedman about some proof theoretic aspects of various forms of Krusal\u27s tree theorem, and in particular the connection with the ordinal Ƭo. We also include a fairly extensive treatment of normal functions on the countable ordinals, and we give a glimpse of Veblen Hierarchies, some subsystems of second-order logic, slow-growing and fast-growing hierarchies including Girard\u27s result, and Goodstein sequences. The central theme of this paper is a powerful theorem due to Kruskal, the tree theorem , as well as a finite miniaturization of Kruskal\u27s theorem due to Harvey Friedman. These versions of Kruskal\u27s theorem are remarkable from a proof-theoretic point of view because they are not provable in relatively strong logical systems. They are examples of so-called natural independence phenomena , which are considered by more logicians as more natural than the mathematical incompleteness results first discovered by Gödel. Kruskal\u27s tree theorem also plays a fundamental role in computer science, because it is one of the main tools for showing that certain orderings on trees are well founded. These orderings play a crucial role in proving the termination of systems of rewrite rules and the correctness of Knuth-Bandix completion procedures. There is also a close connection between a certain infinite countable ordinal called Ƭoand Kruskal\u27s theorem. Previous definitions of the function involved in this connection are known to be incorrect, in that, the function is not monotonic. We offer a repaired definition of this function, and explore briefly the consequences of its existence

    An order-theoretic characterization of the Howard-Bachmann-hierarchy

    Get PDF
    In this article we provide an intrinsic characterization of the famous Howard-Bachmann ordinal in terms of a natural well-partial-ordering by showing that this ordinal can be realized as a maximal order type of a class of generalized trees with respect to a homeomorphic embeddability relation. We use our calculations to draw some conclusions about some corresponding subsystems of second order arithmetic. All these subsystems deal with versions of light-face Π₁¹-comprehension

    Pure Σ2\Sigma_2-Elementarity beyond the Core

    Full text link
    We display the entire structure R2{\cal R}_2 coding Σ1\Sigma_1- and Σ2\Sigma_2-elementarity on the ordinals. This will enable the analysis of pure Σ3\Sigma_3-elementary substructures.Comment: Extensive rewrite of the introduction. Mathematical content of sections 2 and 3 unchanged, extended introduction to section 2. Removed section 4. Theorem 4.3 to appear elsewhere with corrected proo

    On Ordinal Invariants in Well Quasi Orders and Finite Antichain Orders

    Full text link
    We investigate the ordinal invariants height, length, and width of well quasi orders (WQO), with particular emphasis on width, an invariant of interest for the larger class of orders with finite antichain condition (FAC). We show that the width in the class of FAC orders is completely determined by the width in the class of WQOs, in the sense that if we know how to calculate the width of any WQO then we have a procedure to calculate the width of any given FAC order. We show how the width of WQO orders obtained via some classical constructions can sometimes be computed in a compositional way. In particular, this allows proving that every ordinal can be obtained as the width of some WQO poset. One of the difficult questions is to give a complete formula for the width of Cartesian products of WQOs. Even the width of the product of two ordinals is only known through a complex recursive formula. Although we have not given a complete answer to this question we have advanced the state of knowledge by considering some more complex special cases and in particular by calculating the width of certain products containing three factors. In the course of writing the paper we have discovered that some of the relevant literature was written on cross-purposes and some of the notions re-discovered several times. Therefore we also use the occasion to give a unified presentation of the known results

    Computational reverse mathematics and foundational analysis

    Get PDF
    Reverse mathematics studies which subsystems of second order arithmetic are equivalent to key theorems of ordinary, non-set-theoretic mathematics. The main philosophical application of reverse mathematics proposed thus far is foundational analysis, which explores the limits of different foundations for mathematics in a formally precise manner. This paper gives a detailed account of the motivations and methodology of foundational analysis, which have heretofore been largely left implicit in the practice. It then shows how this account can be fruitfully applied in the evaluation of major foundational approaches by a careful examination of two case studies: a partial realization of Hilbert's program due to Simpson [1988], and predicativism in the extended form due to Feferman and Sch\"{u}tte. Shore [2010, 2013] proposes that equivalences in reverse mathematics be proved in the same way as inequivalences, namely by considering only ω\omega-models of the systems in question. Shore refers to this approach as computational reverse mathematics. This paper shows that despite some attractive features, computational reverse mathematics is inappropriate for foundational analysis, for two major reasons. Firstly, the computable entailment relation employed in computational reverse mathematics does not preserve justification for the foundational programs above. Secondly, computable entailment is a Π11\Pi^1_1 complete relation, and hence employing it commits one to theoretical resources which outstrip those available within any foundational approach that is proof-theoretically weaker than Π11-CA0\Pi^1_1\text{-}\mathsf{CA}_0.Comment: Submitted. 41 page
    corecore