17 research outputs found

    Well-orders in the transfinite Japaridze algebra

    Full text link
    This paper studies the transfinite propositional provability logics \glp_\Lambda and their corresponding algebras. These logics have for each ordinal ξ<Λ\xi< \Lambda a modality \la \alpha \ra. We will focus on the closed fragment of \glp_\Lambda (i.e., where no propositional variables occur) and \emph{worms} therein. Worms are iterated consistency expressions of the form \la \xi_n\ra \ldots \la \xi_1 \ra \top. Beklemishev has defined well-orderings <ξ<_\xi on worms whose modalities are all at least ξ\xi and presented a calculus to compute the respective order-types. In the current paper we present a generalization of the original <ξ<_\xi orderings and provide a calculus for the corresponding generalized order-types oξo_\xi. Our calculus is based on so-called {\em hyperations} which are transfinite iterations of normal functions. Finally, we give two different characterizations of those sequences of ordinals which are of the form \la {\formerOmega}_\xi (A) \ra_{\xi \in \ord} for some worm AA. One of these characterizations is in terms of a second kind of transfinite iteration called {\em cohyperation.}Comment: Corrected a minor but confusing omission in the relation between Veblen progressions and hyperation

    Hyperations, Veblen progressions and transfinite iterations of ordinal functions

    Full text link
    In this paper we introduce hyperations and cohyperations, which are forms of transfinite iteration of ordinal functions. Hyperations are iterations of normal functions. Unlike iteration by pointwise convergence, hyperation preserves normality. The hyperation of a normal function f is a sequence of normal functions so that f^0= id, f^1 = f and for all ordinals \alpha, \beta we have that f^(\alpha + \beta) = f^\alpha f^\beta. These conditions do not determine f^\alpha uniquely; in addition, we require that the functions be minimal in an appropriate sense. We study hyperations systematically and show that they are a natural refinement of Veblen progressions. Next, we define cohyperations, very similar to hyperations except that they are left-additive: given \alpha, \beta, f^(\alpha + \beta)= f^\beta f^\alpha. Cohyperations iterate initial functions which are functions that map initial segments to initial segments. We systematically study cohyperations and see how they can be employed to define left inverses to hyperations. Hyperations provide an alternative presentation of Veblen progressions and can be useful where a more fine-grained analysis of such sequences is called for. They are very amenable to algebraic manipulation and hence are convenient to work with. Cohyperations, meanwhile, give a novel way to describe slowly increasing functions as often appear, for example, in proof theory

    Models of transfinite provability logic

    Full text link
    For any ordinal \Lambda, we can define a polymodal logic GLP(\Lambda), with a modality [\xi] for each \xi<\Lambda. These represent provability predicates of increasing strength. Although GLP(\Lambda) has no Kripke models, Ignatiev showed that indeed one can construct a Kripke model of the variable-free fragment with natural number modalities. Later, Icard defined a topological model for the same fragment which is very closely related to Ignatiev's. In this paper we show how to extend these constructions for arbitrary \Lambda. More generally, for each \Theta,\Lambda we build a Kripke model I(\Theta,\Lambda) and a topological model T(\Theta,\Lambda), and show that the closed fragment of GLP(\Lambda) is sound for both of these structures, as well as complete, provided \Theta is large enough

    A self-contained provability calculus for {Γ\Gamma}_{\mbox0}

    Get PDF

    Turing-Taylor expansions for arithmetic theories

    Full text link
    Turing progressions have been often used to measure the proof-theoretic strength of mathematical theories. Turing progressions based on nn-provability give rise to a Πn+1\Pi_{n+1} proof-theoretic ordinal. As such, to each theory UU we can assign the sequence of corresponding Πn+1\Pi_{n+1} ordinals ⟨∣U∣n⟩n>0\langle |U|_n\rangle_{n>0}. We call this sequence a \emph{Turing-Taylor expansion} of a theory. In this paper, we relate Turing-Taylor expansions of sub-theories of Peano Arithmetic to Ignatiev's universal model for the closed fragment of the polymodal provability logic GLPω{\mathbf{GLP}}_\omega. In particular, in this first draft we observe that each point in the Ignatiev model can be seen as Turing-Taylor expansions of formal mathematical theories. Moreover, each sub-theory of Peano Arithmetic that allows for a Turing-Taylor expression will define a unique point in Ignatiev's model.Comment: First draf
    corecore