28 research outputs found

    Abstract Canonical Inference

    Full text link
    An abstract framework of canonical inference is used to explore how different proof orderings induce different variants of saturation and completeness. Notions like completion, paramodulation, saturation, redundancy elimination, and rewrite-system reduction are connected to proof orderings. Fairness of deductive mechanisms is defined in terms of proof orderings, distinguishing between (ordinary) "fairness," which yields completeness, and "uniform fairness," which yields saturation.Comment: 28 pages, no figures, to appear in ACM Trans. on Computational Logi

    Superposition for Higher-Order Logic

    Get PDF

    SGGS theorem proving: an exposition

    Get PDF
    We present in expository style the main ideas in SGGS, which stands for Semantically-Guided Goal-Sensitive theorem proving. SGGS uses sequences of constrained clauses to represent models, instance generation to go from a candidate model to the next, and resolution as well as other inferences to repair the model. SGGS is refutationally complete for first-order logic, model based, semantically guided, proof confluent, and goal sensitive, which appears to be a rare combination of features. In this paper we describe the core of SGGS in a narrative style, emphasizing ideas and trying to keep technicalities to a minimum, in order to advertise it to builders and users of theorem provers

    Studies in the completeness and efficiency of theorem-proving by resolution

    Get PDF
    Inference systems ΀ and search strategies E for T are distinguished from proof procedures ÎČ = (T,E) The completeness of procedures is studied by studying separately the completeness of inference systems and of search strategies. Completeness proofs for resolution systems are obtained by the construction of semantic trees. These systems include minimal α-restricted binary resolution, minimal α-restricted M-clash resolution and maximal pseudo-clash resolution. Certain refinements of hyper-resolution systems with equality axioms are shown to be complete and equivalent to refinements of the pararmodulation method for dealing with equality. The completeness and efficiency of search strategies for theorem-proving problems is studied in sufficient generality to include the case of search strategies for path-search problems in graphs. The notion of theorem-proving problem is defined abstractly so as to be dual to that of and" or tree. Special attention is given to resolution problems and to search strategies which generate simpler before more complex proofs. For efficiency, a proof procedure (T,E) requires an efficient search strategy E as well as an inference system T which admits both simple proofs and relatively few redundant and irrelevant derivations. The theory of efficient proof procedures outlined here is applied to proving the increased efficiency of the usual method for deleting tautologies and subsumed clauses. Counter-examples are exhibited for both the completeness and efficiency of alternative methods for deleting subsumed clauses. The efficiency of resolution procedures is improved by replacing the single operation of resolving a clash by the two operations of generating factors of clauses and of resolving a clash of factors. Several factoring methods are investigated for completeness. Of these the m-factoring method is shown to be always more efficient than the Wos-Robinson method

    Automated Deduction – CADE 28

    Get PDF
    This open access book constitutes the proceeding of the 28th International Conference on Automated Deduction, CADE 28, held virtually in July 2021. The 29 full papers and 7 system descriptions presented together with 2 invited papers were carefully reviewed and selected from 76 submissions. CADE is the major forum for the presentation of research in all aspects of automated deduction, including foundations, applications, implementations, and practical experience. The papers are organized in the following topics: Logical foundations; theory and principles; implementation and application; ATP and AI; and system descriptions

    Knuth-Bendix Completion with Modern Termination Checking, Master\u27s Thesis, August 2006

    Get PDF
    Knuth-Bendix completion is a technique for equational automated theorem proving based on term rewriting. This classic procedure is parametrized by an equational theory and a (well-founded) reduction order used at runtime to ensure termination of intermediate rewriting systems. Any reduction order can be used in principle, but modern completion tools typically implement only a few classes of such orders (e.g., recursive path orders and polynomial orders). Consequently, the theories for which completion can possibly succeed are limited to those compatible with an instance of an implemented class of orders. Finding and specifying a compatible order, even among a small number of classes, is challenging in practice and crucial to the success of the method. In this thesis, a new variant on the Knuth-Bendix completion procedure is developed in which no order is provided by the user. Modern termination-checking methods are instead used to verify termination of rewriting systems. We prove the new method correct and also present an implementation called Slothrop which obtains solutions for theories that do not admit typical orders and that have not previously been solved by a fully automatic tool

    Hyperresolution for guarded formulae

    Get PDF
    AbstractThis paper investigates the use of hyperresolution as a decision procedure and model builder for guarded formulae. In general, hyperresolution is not a decision procedure for the entire guarded fragment. However we show that there are natural fragments of the guarded fragment which can be decided by hyperresolution. In particular, we prove decidability of hyperresolution with or without splitting for the fragment GF1− and point out several ways of extending this fragment without losing decidability. As hyperresolution is closely related to various tableaux methods the present work is also relevant for tableaux methods. We compare our approach to hypertableaux, and mention the relationship to other clausal classes which are decidable by hyperresolution

    Hilbert's epsilon as an Operator of Indefinite Committed Choice

    Get PDF
    Paul Bernays and David Hilbert carefully avoided overspecification of Hilbert's epsilon-operator and axiomatized only what was relevant for their proof-theoretic investigations. Semantically, this left the epsilon-operator underspecified. In the meanwhile, there have been several suggestions for semantics of the epsilon as a choice operator. After reviewing the literature on semantics of Hilbert's epsilon operator, we propose a new semantics with the following features: We avoid overspecification (such as right-uniqueness), but admit indefinite choice, committed choice, and classical logics. Moreover, our semantics for the epsilon supports proof search optimally and is natural in the sense that it does not only mirror some cases of referential interpretation of indefinite articles in natural language, but may also contribute to philosophy of language. Finally, we ask the question whether our epsilon within our free-variable framework can serve as a paradigm useful in the specification and computation of semantics of discourses in natural language.Comment: ii + 73 pages. arXiv admin note: substantial text overlap with arXiv:1104.244
    corecore