4,587 research outputs found

    Weighted Well-Covered Claw-Free Graphs

    Full text link
    A graph G is well-covered if all its maximal independent sets are of the same cardinality. Assume that a weight function w is defined on its vertices. Then G is w-well-covered if all maximal independent sets are of the same weight. For every graph G, the set of weight functions w such that G is w-well-covered is a vector space. Given an input claw-free graph G, we present an O(n^6)algortihm, whose input is a claw-free graph G, and output is the vector space of weight functions w, for which G is w-well-covered. A graph G is equimatchable if all its maximal matchings are of the same cardinality. Assume that a weight function w is defined on the edges of G. Then G is w-equimatchable if all its maximal matchings are of the same weight. For every graph G, the set of weight functions w such that G is w-equimatchable is a vector space. We present an O(m*n^4 + n^5*log(n)) algorithm which receives an input graph G, and outputs the vector space of weight functions w such that G is w-equimatchable.Comment: 14 pages, 1 figur

    Computing Well-Covered Vector Spaces of Graphs using Modular Decomposition

    Full text link
    A graph is well-covered if all its maximal independent sets have the same cardinality. This well studied concept was introduced by Plummer in 1970 and naturally generalizes to the weighted case. Given a graph GG, a real-valued vertex weight function ww is said to be a well-covered weighting of GG if all its maximal independent sets are of the same weight. The set of all well-covered weightings of a graph GG forms a vector space over the field of real numbers, called the well-covered vector space of GG. Since the problem of recognizing well-covered graphs is co\mathsf{co}-NP\mathsf{NP}-complete, the problem of computing the well-covered vector space of a given graph is co\mathsf{co}-NP\mathsf{NP}-hard. Levit and Tankus showed in 2015 that the problem admits a polynomial-time algorithm in the class of claw-free graph. In this paper, we give two general reductions for the problem, one based on anti-neighborhoods and one based on modular decomposition, combined with Gaussian elimination. Building on these results, we develop a polynomial-time algorithm for computing the well-covered vector space of a given fork-free graph, generalizing the result of Levit and Tankus. Our approach implies that well-covered fork-free graphs can be recognized in polynomial time and also generalizes some known results on cographs.Comment: 25 page

    Matchings, coverings, and Castelnuovo-Mumford regularity

    Full text link
    We show that the co-chordal cover number of a graph G gives an upper bound for the Castelnuovo-Mumford regularity of the associated edge ideal. Several known combinatorial upper bounds of regularity for edge ideals are then easy consequences of covering results from graph theory, and we derive new upper bounds by looking at additional covering results.Comment: 12 pages; v4 has minor changes for publicatio
    corecore