1,409,801 research outputs found

    Structural and Chemical Orders in Ni64.5Zr35.5 Metallic Glass by Molecular Dynamics Simulation

    Get PDF
    The atomic structure of Ni64.5Zr35.5 metallic glass has been investigated by molecular dynamics (MD) simulations. The calculated structure factors from the MD glassy sample at room temperature agree well with the X-ray diffraction (XRD) and neutron diffraction (ND) experimental data. Using the pairwise cluster alignment and clique analysis methods, we show that there are three types dominant short-range order (SRO) motifs around Ni atoms in the glass sample of Ni64.5Zr35.5, i.e., Mixed-Icosahedron(ICO)-Cube, Twined-Cube and icosahedron-like clusters. Furthermore, chemical order and medium-range order (MRO) analysis show that the Mixed-ICO-Cube and Twined-Cube clusters exhibit the characteristics of the crystalline B2 phase. Our simulation results suggest that the weak glass-forming ability (GFA) of Ni64.5Zr35.5 can be attributed to the competition between the glass forming ICO SRO and the crystalline Mixed-ICO-Cube and Twined-Cube motifs

    Self-Assembled Monolayers of Symmetrical and Mixed Alkyl Fluoroalkyl Disulfides on Gold. 1. Synthesis of Disulfides and Investigation of Monolayer Properties

    Get PDF
    The synthesis of a variety of symmetrical bis(alkyl) and bis(fluoroalkyl) disulfides as well as mixed alkyl fluoroalkyl disulfides containing ester or amide groups is described. Self-assembled monolayers of these compounds on gold formed by spontaneous adsorption from solution are studied by contact angle measurements and polarized grazing incidence Fourier transform infrared spectroscopy (FTIR). The contact angles indicate tight packing of the molecules and the incorporation of both alkyl and fluoroalkyl chains in the monolayers. By means of FTIR, the typical tilted orientation of the alkyl chains is confirmed for monolayers derived from symmetrical alkyl disulfides, whereas, in self-assembled monolayers of the symmetrical fluorocarbon and the mixed disulfides, the molecules are oriented much closer to the surface normal direction. The wetting properties and the FTIR spectra of monolayers formed by coadsorption of an n-alkanethiol and a perfluorinated thiol are comparable to those formed by the self-assembly of the corresponding mixed disulfide. There is no indication for phase separation in any of the systems studied at room temperature. The mixed alkyl fluoroalkyl disulfides promise to form suitable monolayers on gold for the investigation of heat-induced phase separation on the gold surface

    Characterization of crack growth under combined loading

    Get PDF
    Room-temperature static and cyclic tests were made on 21 aluminum plates in the shape of a 91.4x91.4-cm Maltese cross with 45 deg flaws to develop crack growth and fracture toughness data under mixed-mode conditions. During cyclic testing, it was impossible to maintain a high proportion of shear-mode deformation on the crack tips. Cracks either branched or turned. Under static loading, cracks remained straight if shear stress intensity exceeded normal stress intensity. Mixed-mode crack growth rate data compared reasonably well with published single-mode data, and measured crack displacements agreed with the straight and branched crack analyses. Values of critical strain energy release rate at fracture for pure shear were approximately 50% higher than for pure normal opening, and there was a large reduction in normal stress intensity at fracture in the presence of high shear stress intensity. Net section stresses were well into the inelastic range when fracture occurred under high shear on the cracks

    Fractography of the high temperature hydrogen attack of a medium carbon steel

    Get PDF
    Microscopic fracture processes were studied which are associated with hydrogen attack of a medium carbon steel in a well-controlled, high-temperature, high-purity hydrogen environment. Exposure to a hydrogen pressure and temperature of 3.5 MN/m2 and 575 C was found to degrade room temperature tensile properties with increasing exposure time. After 408 hr, yield and ultimate strengths were reduced by more than 40 percent and elongation was reduced to less than 2 percent. Initial fissure formation was found to be associated with manganese rich particles, most probably manganese oxide, aligned in the microstructure during the rolling operation. Fissure growth was found to be associated with a reduction in carbide content of the microstructure and was inhibited by the depletion of carbon. The interior surfaces of sectioned fissures or bubbles exhibit both primary and secondary cracking by intergranular separation. The grain surfaces were rough and rounded, suggesting a diffusion-associated separation process. Specimens that failed at room temperature after exposure to hydrogen were found to exhibit mixed mode fracture having varying amounts of intergranular separation, dimple formation, and cleavage, depending on exposure time

    Transport mechanism through metal-cobaltite interfaces

    Get PDF
    The resistive switching (RS) properties as a function of temperature were studied for Ag/La1−x_{1-x}Srx_xCoO3_3 (LSCO) interfaces. The LSCO is a fully-relaxed 100 nm film grown by metal organic deposition on a LaAlO3_3 substrate. Both low and a high resistance states were set at room temperature and the temperature dependence of their current-voltage (IV) characteristics was mea- sured taking care to avoid a significant change of the resistance state. The obtained non-trivial IV curves of each state were well reproduced by a circuit model which includes a Poole-Frenkel element and two ohmic resistances. A microscopic description of the changes produced by the RS is given, which enables to envision a picture of the interface as an area where conductive and insulating phases are mixed, producing Maxwell-Wagner contributions to the dielectric properties.Comment: 13 pages, 5 figures, to be published in APL. Corresponding author: C. Acha ([email protected]
    • …
    corecore