448 research outputs found

    Lower Bounds on Exponential Moments of the Quadratic Error in Parameter Estimation

    Full text link
    Considering the problem of risk-sensitive parameter estimation, we propose a fairly wide family of lower bounds on the exponential moments of the quadratic error, both in the Bayesian and the non--Bayesian regime. This family of bounds, which is based on a change of measures, offers considerable freedom in the choice of the reference measure, and our efforts are devoted to explore this freedom to a certain extent. Our focus is mostly on signal models that are relevant to communication problems, namely, models of a parameter-dependent signal (modulated signal) corrupted by additive white Gaussian noise, but the methodology proposed is also applicable to other types of parametric families, such as models of linear systems driven by random input signals (white noise, in most cases), and others. In addition to the well known motivations of the risk-sensitive cost function (i.e., the exponential quadratic cost function), which is most notably, the robustness to model uncertainty, we also view this cost function as a tool for studying fundamental limits concerning the tail behavior of the estimation error. Another interesting aspect, that we demonstrate in a certain parametric model, is that the risk-sensitive cost function may be subjected to phase transitions, owing to some analogies with statistical mechanics.Comment: 28 pages; 4 figures; submitted for publicatio

    Analysis of the Bayesian Cramer-Rao lower bound in astrometry: Studying the impact of prior information in the location of an object

    Full text link
    Context. The best precision that can be achieved to estimate the location of a stellar-like object is a topic of permanent interest in the astrometric community. Aims. We analyse bounds for the best position estimation of a stellar-like object on a CCD detector array in a Bayesian setting where the position is unknown, but where we have access to a prior distribution. In contrast to a parametric setting where we estimate a parameter from observations, the Bayesian approach estimates a random object (i.e., the position is a random variable) from observations that are statistically dependent on the position. Methods. We characterize the Bayesian Cramer-Rao (CR) that bounds the minimum mean square error (MMSE) of the best estimator of the position of a point source on a linear CCD-like detector, as a function of the properties of detector, the source, and the background. Results. We quantify and analyse the increase in astrometric performance from the use of a prior distribution of the object position, which is not available in the classical parametric setting. This gain is shown to be significant for various observational regimes, in particular in the case of faint objects or when the observations are taken under poor conditions. Furthermore, we present numerical evidence that the MMSE estimator of this problem tightly achieves the Bayesian CR bound. This is a remarkable result, demonstrating that all the performance gains presented in our analysis can be achieved with the MMSE estimator. Conclusions The Bayesian CR bound can be used as a benchmark indicator of the expected maximum positional precision of a set of astrometric measurements in which prior information can be incorporated. This bound can be achieved through the conditional mean estimator, in contrast to the parametric case where no unbiased estimator precisely reaches the CR bound.Comment: 17 pages, 12 figures. Accepted for publication on Astronomy & Astrophysic

    Use and Abuse of the Fisher Information Matrix in the Assessment of Gravitational-Wave Parameter-Estimation Prospects

    Get PDF
    The Fisher-matrix formalism is used routinely in the literature on gravitational-wave detection to characterize the parameter-estimation performance of gravitational-wave measurements, given parametrized models of the waveforms, and assuming detector noise of known colored Gaussian distribution. Unfortunately, the Fisher matrix can be a poor predictor of the amount of information obtained from typical observations, especially for waveforms with several parameters and relatively low expected signal-to-noise ratios (SNR), or for waveforms depending weakly on one or more parameters, when their priors are not taken into proper consideration. In this paper I discuss these pitfalls; show how they occur, even for relatively strong signals, with a commonly used template family for binary-inspiral waveforms; and describe practical recipes to recognize them and cope with them. Specifically, I answer the following questions: (i) What is the significance of (quasi-)singular Fisher matrices, and how must we deal with them? (ii) When is it necessary to take into account prior probability distributions for the source parameters? (iii) When is the signal-to-noise ratio high enough to believe the Fisher-matrix result? In addition, I provide general expressions for the higher-order, beyond--Fisher-matrix terms in the 1/SNR expansions for the expected parameter accuracies.Comment: 24 pages, 3 figures, previously known as "A User Manual for the Fisher Information Matrix"; final, corrected PRD versio

    A Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually-unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically-polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy-densities of tensor, vector, and scalar modes at 95% credibility to ΩT

    Search for Tensor, Vector, and Scalar Polarizations In the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0

    Setting upper limits on the strength of periodic gravitational waves from PSR J1939+2134 using the first science data from the GEO 600 and LIGO detectors

    Get PDF
    Data collected by the GEO 600 and LIGO interferometric gravitational wave detectors during their first observational science run were searched for continuous gravitational waves from the pulsar J1939+2134 at twice its rotation frequency. Two independent analysis methods were used and are demonstrated in this paper: a frequency domain method and a time domain method. Both achieve consistent null results, placing new upper limits on the strength of the pulsar's gravitational wave emission. A model emission mechanism is used to interpret the limits as a constraint on the pulsar's equatorial ellipticity
    corecore