86 research outputs found

    An Overview of Multi-Attribute Decision Making (MADM) Vertical Handover Using Systematic Mapping

    Get PDF
    The evolution of infotainment industries yet the advancement of cellular gadgets such as smartphones, tablets, and laptop had increased the request on cellular traffic demands. As a result, a Heterogeneous Wireless Network (HWN) has been introduced to fulfil users requests in having seamless mobility and better Quality of Services (QoS) for the users. A lot of research works have been done in order to provide a seamless connection to the users. Even though a lot of methods have been proposed, a Multi-Attribute Decision Making (MADM) has been seemed like a promising way due to its ability to evaluate many attributes simultaneously. Previously, many reviews based on MADM methods in a Heterogeneous Wireless Network provides a details review which required researchers time in order to determine the possible potential areas to be explored. Therefore, in this study, we present an overview of the MADM method in performing vertical handover via a systematic mapping method. This will enable future researchers to identify the trends and research opportunities within this area. This mapping study analysed 30 papers. Results from the study show eight main potential research issues can be explored by researchers, including normalisation, criteria weighting, ranking abnormality, network selection, and performance comparison between MADM algorithms, network selection for a group of calls, mobility patterns and handover triggering

    Performance Comparison of MADM Algorithms for Network Selection in Heterogeneous Networks

    Get PDF
    Vertical handover is a need of present era of heterogeneous networks comprising different network technologies. Lot of quality of service (QoS) parameters, user�s preferences, network conditions and other parameters participate in selection of appropriate network among available networks. This multi- criteria nature of vertical handover verifiesapplicability of multiple attribute decision making (MADM) algorithms to be used for network selection in heterogeneous networks. In this work, six MADM algorithms SAW, MEW, TOPSIS, GRA, AHP and VIKOR have been implemented. Performance of these algorithms has beenanalyzed for handover latency,number of handovers and optimum network selection. It was concluded that VIKOR algorithm is able to provide compromised solution in the light of these parameters

    Trusted Network Selection using SAW and TOPSIS Algorithms for Heterogeneous Wireless Networks

    Full text link
    Seamless continuity is the main goal in fourth generation Wireless networks (FGWNs), to achieve this "HANDOVER" technique is used, when a mobile terminal(MT) is in overlapping area for service continuity, Handover mechanism are mainly used. In Heterogeneous wireless networks main challenge is continual connection among the different networks like WiFi, WiMax, WLAN, WPAN etc. In this paper, Vertical handover decision schemes are compared and Multi Attribute Decision Making (MADM) is used to choose the best network from the available Visitor networks (VTs) for the continuous connection by the mobile terminal. In our work we mainly concentrated to the handover decision phase and to reduce the processing delay in the period of handover. MADM algorithms SAW and TOPSIS where compared to reduce the processing delay by using NS2 to evaluate the parameters for processing delay.Comment: arXiv admin note: substantial text overlap with arXiv:1106.240

    Network selection based on chi-square distance and reputation for internet of things

    Get PDF
    The internet of things (IoT) has become one of the most important technologies of the 21st century. The IoT environment is composed of heterogeneous IoT communication networks. These technologies are complementary and need to be integrated to meet the requirements of different types of IoT applications that require the mobility of the IoT device under different IoT communication networks. In this paper, the vertical handover decision method is considered to select the appropriate network among different IoT technologies. So, IoT devices, equipped with several radio technologies, can select the most suitable network based on several criteria like quality of service (QoS), cost, power, and security. In this work, a multi-attribute decision-making algorithm (MADM) based on techniques for order preference by similarity to an ideal solution (TOPSIS) that uses chi-square distance instead of Euclidean distance is proposed. The network reputation is added to reduce the average number of handoffs. The proposed algorithm was implemented to select the best technology depending on the requirements of the different IoT traffic classes. The obtained results showed that our proposition outperforms the traditional MADM algorithms

    Vertical Handover decision schemes using SAW and WPM for Network selection in Heterogeneous Wireless Networks

    Get PDF
    Seamless continuity is the main goal and challenge in fourth generation Wireless networks (FGWNs), to achieve seamless connectivity "HANDOVER" technique is used,Handover mechanism are mainly used when a mobile terminal(MT) is in overlapping area for service continuity. In Heterogeneous wireless networks main challenge is continual connection among the different networks like WiFi, WiMax, WLAN, WPAN etc. In this paper, Vertical handover decision schemes are compared, Simple Additive Weighting method (SAW) and Weighted product model (WPM) are used to choose the best network from the available Visitor networks(VTs) for the continuous connection by the mobile terminal. In our work we mainly concentrated to the handover decision phase and to reduce the processing delay in the period of handover. In this paper both SAW and WPM methods are compared with the Qos parameters of the mobile terminal (MT) to connect with the best network. Keywords: Handover, Vertical handover decision schemes, Simple additive weighting, Weight product method.Comment: arXiv admin note: substantial text overlap with arXiv:1108.014

    Seamless Heterogeneous Handoff Based on SAP

    Get PDF
    Contemporarily there has been a number of techniques being suggested and used for heterogeneous handoff hitch. Different types of decision making methods are being implemented for handoff impediment. Mobile terminals progressing in neighbourhood will incur a handoff when its link capacity decreases below the threshold level. Various types of Multiple Attribute Decision Making methods have been exploited for handoff decision making. Here we have used a novel Reliable Seamless Handoff such as Simple Analytical Process method which uses Analytical Hierarchy Process for predicting the criterion weights and employed Simple Additive Weighting method for handoff decision making. Alternatives such as GSM, CDMA and EDGE networks are used. Data Rate, Packet Loss, Velocity, Bandwidth, Dwell time and Jitter are the parameters applied

    Network Selection Problems - QoE vs QoS Who is the Winner?

    Get PDF
    In network selection problem (NSP), there are now two schools of thought. There are those who think using QoE (Quality of Experience) is the best yardstick to measure the suitability of a Candidate Network (CN) to handover to. On the other hand, Quality of Service (QoS) is also advocated as the solution for network selection problems. In this article, a comprehensive framework that supports effective and efficient network selection is presented. The framework   attempts to provide a holistic solution to network selection problem that is achieved by combining both of the QoS and QoE measures.   Using this hybrid solution the best qualities in both methods are combined to overcome issues of the network selection problem According to ITU-R (International Telecommunications Union – Radio Standardization Sector), a 4G network is defined as having peak data rates of 100Mb/s for mobile nodes with speed up to 250 km/hr and 1Gb/s for mobile nodes moving at pedestrian speed. Based on this definition, it is safe to say that mobile nodes that can go from pedestrian speed to speed of up to 250 km/hr will be the norm in future. This indicates that the MN’s mobility will be highly dynamic. In particular, this article addresses the issue of network selection for high speed Mobile Nodes (MN) in 4G networks. The framework presented in this article also discusses how the QoS value collected from CNs can be fine-tuned to better reflect an MN’s current mobility scenario

    Handover Architectures for Heterogeneous Networks Using the Media Independent Information Handover (MIH)

    Get PDF
    In heterogeneous networks, network selection by nature is a multi-dimensional problem. Many parameters need to be considered for handover decision making. Apart from handover accuracy and efficiency, an important consideration is the scalability and signaling overhead of such handover algorithms. In this article we propose to break down a Simple Additive Weighting (SAW) based heterogeneous handover algorithm in two parts. The execution of the first part is carried out in an independent and proactive manner prior to the actual handover, assuming three different handover architectures. The handover architectures are differentiated based upon the level of the distribution of the handover algorithm among multiple network components. The Media Independent Handover (MIH) and its different services are used to retrieve and share information among MIH enabled nodes and for conformity among heterogeneous network standards. The proposed algorithm is evaluated with respect to handover accuracy, handover delay efficiency and signaling overhead. The evaluation is carried out for all three handover architectures using simulations. Only handovers between Wi-Fi (IEEE 802.11) and WiMAX (IEEE 802.16) networks are considered. But the handover framework is general and can be extended to consider other wireless and mobile communication networks
    • …
    corecore