737 research outputs found

    Multi-dimensional imaging data recovery via minimizing the partial sum of tubal nuclear norm

    Full text link
    In this paper, we investigate tensor recovery problems within the tensor singular value decomposition (t-SVD) framework. We propose the partial sum of the tubal nuclear norm (PSTNN) of a tensor. The PSTNN is a surrogate of the tensor tubal multi-rank. We build two PSTNN-based minimization models for two typical tensor recovery problems, i.e., the tensor completion and the tensor principal component analysis. We give two algorithms based on the alternating direction method of multipliers (ADMM) to solve proposed PSTNN-based tensor recovery models. Experimental results on the synthetic data and real-world data reveal the superior of the proposed PSTNN

    Efficient tensor completion: Low-rank tensor train

    Full text link
    This paper proposes a novel formulation of the tensor completion problem to impute missing entries of data represented by tensors. The formulation is introduced in terms of tensor train (TT) rank which can effectively capture global information of tensors thanks to its construction by a well-balanced matricization scheme. Two algorithms are proposed to solve the corresponding tensor completion problem. The first one called simple low-rank tensor completion via tensor train (SiLRTC-TT) is intimately related to minimizing the TT nuclear norm. The second one is based on a multilinear matrix factorization model to approximate the TT rank of the tensor and called tensor completion by parallel matrix factorization via tensor train (TMac-TT). These algorithms are applied to complete both synthetic and real world data tensors. Simulation results of synthetic data show that the proposed algorithms are efficient in estimating missing entries for tensors with either low Tucker rank or TT rank while Tucker-based algorithms are only comparable in the case of low Tucker rank tensors. When applied to recover color images represented by ninth-order tensors augmented from third-order ones, the proposed algorithms outperforms the Tucker-based algorithms.Comment: 11 pages, 9 figure

    Tensor Ring Decomposition with Rank Minimization on Latent Space: An Efficient Approach for Tensor Completion

    Full text link
    In tensor completion tasks, the traditional low-rank tensor decomposition models suffer from the laborious model selection problem due to their high model sensitivity. In particular, for tensor ring (TR) decomposition, the number of model possibilities grows exponentially with the tensor order, which makes it rather challenging to find the optimal TR decomposition. In this paper, by exploiting the low-rank structure of the TR latent space, we propose a novel tensor completion method which is robust to model selection. In contrast to imposing the low-rank constraint on the data space, we introduce nuclear norm regularization on the latent TR factors, resulting in the optimization step using singular value decomposition (SVD) being performed at a much smaller scale. By leveraging the alternating direction method of multipliers (ADMM) scheme, the latent TR factors with optimal rank and the recovered tensor can be obtained simultaneously. Our proposed algorithm is shown to effectively alleviate the burden of TR-rank selection, thereby greatly reducing the computational cost. The extensive experimental results on both synthetic and real-world data demonstrate the superior performance and efficiency of the proposed approach against the state-of-the-art algorithms

    Tensor-based formulation and nuclear norm regularization for multi-energy computed tomography

    Full text link
    The development of energy selective, photon counting X-ray detectors allows for a wide range of new possibilities in the area of computed tomographic image formation. Under the assumption of perfect energy resolution, here we propose a tensor-based iterative algorithm that simultaneously reconstructs the X-ray attenuation distribution for each energy. We use a multi-linear image model rather than a more standard "stacked vector" representation in order to develop novel tensor-based regularizers. Specifically, we model the multi-spectral unknown as a 3-way tensor where the first two dimensions are space and the third dimension is energy. This approach allows for the design of tensor nuclear norm regularizers, which like its two dimensional counterpart, is a convex function of the multi-spectral unknown. The solution to the resulting convex optimization problem is obtained using an alternating direction method of multipliers (ADMM) approach. Simulation results shows that the generalized tensor nuclear norm can be used as a stand alone regularization technique for the energy selective (spectral) computed tomography (CT) problem and when combined with total variation regularization it enhances the regularization capabilities especially at low energy images where the effects of noise are most prominent

    Accelerated and Inexact Soft-Impute for Large-Scale Matrix and Tensor Completion

    Full text link
    Matrix and tensor completion aim to recover a low-rank matrix / tensor from limited observations and have been commonly used in applications such as recommender systems and multi-relational data mining. A state-of-the-art matrix completion algorithm is Soft-Impute, which exploits the special "sparse plus low-rank" structure of the matrix iterates to allow efficient SVD in each iteration. Though Soft-Impute is a proximal algorithm, it is generally believed that acceleration destroys the special structure and is thus not useful. In this paper, we show that Soft-Impute can indeed be accelerated without comprising this structure. To further reduce the iteration time complexity, we propose an approximate singular value thresholding scheme based on the power method. Theoretical analysis shows that the proposed algorithm still enjoys the fast O(1/T2)O(1/T^2) convergence rate of accelerated proximal algorithms. We further extend the proposed algorithm to tensor completion with the scaled latent nuclear norm regularizer. We show that a similar "sparse plus low-rank" structure also exists, leading to low iteration complexity and fast O(1/T2)O(1/T^2) convergence rate. Extensive experiments demonstrate that the proposed algorithm is much faster than Soft-Impute and other state-of-the-art matrix and tensor completion algorithms.Comment: Journal version of previous conference paper 'Accelerated inexact soft-impute for fast large-scale matrix completion' appeared at IJCAI 201

    Enhanced nonconvex low-rank approximation of tensor multi-modes for tensor completion

    Full text link
    Higher-order low-rank tensor arises in many data processing applications and has attracted great interests. Inspired by low-rank approximation theory, researchers have proposed a series of effective tensor completion methods. However, most of these methods directly consider the global low-rankness of underlying tensors, which is not sufficient for a low sampling rate; in addition, the single nuclear norm or its relaxation is usually adopted to approximate the rank function, which would lead to suboptimal solution deviated from the original one. To alleviate the above problems, in this paper, we propose a novel low-rank approximation of tensor multi-modes (LRATM), in which a double nonconvex LγL_{\gamma} norm is designed to represent the underlying joint-manifold drawn from the modal factorization factors of the underlying tensor. A block successive upper-bound minimization method-based algorithm is designed to efficiently solve the proposed model, and it can be demonstrated that our numerical scheme converges to the coordinatewise minimizers. Numerical results on three types of public multi-dimensional datasets have tested and shown that our algorithm can recover a variety of low-rank tensors with significantly fewer samples than the compared methods.Comment: arXiv admin note: substantial text overlap with arXiv:2004.0874

    Tensor-Ring Nuclear Norm Minimization and Application for Visual Data Completion

    Full text link
    Tensor ring (TR) decomposition has been successfully used to obtain the state-of-the-art performance in the visual data completion problem. However, the existing TR-based completion methods are severely non-convex and computationally demanding. In addition, the determination of the optimal TR rank is a tough work in practice. To overcome these drawbacks, we first introduce a class of new tensor nuclear norms by using tensor circular unfolding. Then we theoretically establish connection between the rank of the circularly-unfolded matrices and the TR ranks. We also develop an efficient tensor completion algorithm by minimizing the proposed tensor nuclear norm. Extensive experimental results demonstrate that our proposed tensor completion method outperforms the conventional tensor completion methods in the image/video in-painting problem with striped missing values.Comment: This paper has been accepted by ICASSP 201

    Convolutional Imputation of Matrix Networks

    Full text link
    A matrix network is a family of matrices, with relatedness modeled by a weighted graph. We consider the task of completing a partially observed matrix network. We assume a novel sampling scheme where a fraction of matrices might be completely unobserved. How can we recover the entire matrix network from incomplete observations? This mathematical problem arises in many applications including medical imaging and social networks. To recover the matrix network, we propose a structural assumption that the matrices have a graph Fourier transform which is low-rank. We formulate a convex optimization problem and prove an exact recovery guarantee for the optimization problem. Furthermore, we numerically characterize the exact recovery regime for varying rank and sampling rate and discover a new phase transition phenomenon. Then we give an iterative imputation algorithm to efficiently solve the optimization problem and complete large scale matrix networks. We demonstrate the algorithm with a variety of applications such as MRI and Facebook user network.Comment: Accepted by ICML 201

    Scaled Nuclear Norm Minimization for Low-Rank Tensor Completion

    Full text link
    Minimizing the nuclear norm of a matrix has been shown to be very efficient in reconstructing a low-rank sampled matrix. Furthermore, minimizing the sum of nuclear norms of matricizations of a tensor has been shown to be very efficient in recovering a low-Tucker-rank sampled tensor. In this paper, we propose to recover a low-TT-rank sampled tensor by minimizing a weighted sum of nuclear norms of unfoldings of the tensor. We provide numerical results to show that our proposed method requires significantly less number of samples to recover to the original tensor in comparison with simply minimizing the sum of nuclear norms since the structure of the unfoldings in the TT tensor model is fundamentally different from that of matricizations in the Tucker tensor model

    Low-Rank Tensor Completion by Truncated Nuclear Norm Regularization

    Full text link
    Currently, low-rank tensor completion has gained cumulative attention in recovering incomplete visual data whose partial elements are missing. By taking a color image or video as a three-dimensional (3D) tensor, previous studies have suggested several definitions of tensor nuclear norm. However, they have limitations and may not properly approximate the real rank of a tensor. Besides, they do not explicitly use the low-rank property in optimization. It is proved that the recently proposed truncated nuclear norm (TNN) can replace the traditional nuclear norm, as a better estimation to the rank of a matrix. Thus, this paper presents a new method called the tensor truncated nuclear norm (T-TNN), which proposes a new definition of tensor nuclear norm and extends the truncated nuclear norm from the matrix case to the tensor case. Beneficial from the low rankness of TNN, our approach improves the efficacy of tensor completion. We exploit the previously proposed tensor singular value decomposition and the alternating direction method of multipliers in optimization. Extensive experiments on real-world videos and images demonstrate that the performance of our approach is superior to those of existing methods.Comment: Accepted as a poster presentation at the 24th International Conference on Pattern Recognition in 20-24 August 2018, Beijing, Chin
    • …
    corecore