87 research outputs found

    Edge-based image steganography

    Get PDF

    Steganography A Data Hiding Technique

    Get PDF
    Steganography implements an encryption technique in which communication takes place by hiding information. A hidden message is the combination of a secret message with the carrier message. This technique can be used to hide the message in an image, a video file, an audio file or in a file system. There are large variety of steganography techniques that will be used for hiding secret information in images. The final output image is called as a stego-image which consists of a secret message or information. Imperceptibility, payload, and robustness are three most important parameters for audio steganography. For a more secure approach, encryption can be used, which will encrypt the secret message using a secret key and then sent to the receiver. The receiver after receiving the message then decrypts the secret message to obtain the original one. In this paper, compared steganography with cryptography, which is an encrypting technique and explained how steganography provides better security in terms of hiding the secret message. In this paper, the various techniques are illustrated, which are used in steganography and studying the implementation of those techniques. Also, demonstrated the implementation process of one of the steganography techniques. A comparative analysis is performed between various steganographic tools by using the sample test images and test data. The quality metrics such as PSNR and SSIM are calculated for the final output images which are used for rating the tools. This paper also discusses about the Steganalysis which is known as the process of identifying the use of steganography

    Quantitative steganalysis of LSB embedding in JPEG domain

    Full text link

    Side-Information For Steganography Design And Detection

    Get PDF
    Today, the most secure steganographic schemes for digital images embed secret messages while minimizing a distortion function that describes the local complexity of the content. Distortion functions are heuristically designed to predict the modeling error, or in other words, how difficult it would be to detect a single change to the original image in any given area. This dissertation investigates how both the design and detection of such content-adaptive schemes can be improved with the use of side-information. We distinguish two types of side-information, public and private: Public side-information is available to the sender and at least in part also to anybody else who can observe the communication. Content complexity is a typical example of public side-information. While it is commonly used for steganography, it can also be used for detection. In this work, we propose a modification to the rich-model style feature sets in both spatial and JPEG domain to inform such feature sets of the content complexity. Private side-information is available only to the sender. The previous use of private side-information in steganography was very successful but limited to steganography in JPEG images. Also, the constructions were based on heuristic with little theoretical foundations. This work tries to remedy this deficiency by introducing a scheme that generalizes the previous approach to an arbitrary domain. We also put forward a theoretical investigation of how to incorporate side-information based on a model of images. Third, we propose to use a novel type of side-information in the form of multiple exposures for JPEG steganography
    • …
    corecore