1,604 research outputs found

    Fairing-PIA: Progressive iterative approximation for fairing curve and surface generation

    Full text link
    The fairing curves and surfaces are used extensively in geometric design, modeling, and industrial manufacturing. However, the majority of conventional fairing approaches, which lack sufficient parameters to improve fairness, are based on energy minimization problems. In this study, we develop a novel progressive-iterative approximation method for fairing curve and surface generation (fairing-PIA). Fairing-PIA is an iteration method that can generate a series of curves (surfaces) by adjusting the control points of B-spline curves (surfaces). In fairing-PIA, each control point is endowed with an individual weight. Thus, the fairing-PIA has many parameters to optimize the shapes of curves and surfaces. Not only a fairing curve (surface) can be generated globally through fairing-PIA, but also the curve (surface) can be improved locally. Moreover, we prove the convergence of the developed fairing-PIA and show that the conventional energy minimization fairing model is a special case of fairing-PIA. Finally, numerical examples indicate that the proposed method is effective and efficient.Comment: 21 pages, 10 figure

    Randomized progressive iterative approximation for B-spline curve and surface fittings

    Full text link
    For large-scale data fitting, the least-squares progressive iterative approximation is a widely used method in many applied domains because of its intuitive geometric meaning and efficiency. In this work, we present a randomized progressive iterative approximation (RPIA) for the B-spline curve and surface fittings. In each iteration, RPIA locally adjusts the control points according to a random criterion of index selections. The difference for each control point is computed concerning the randomized block coordinate descent method. From geometric and algebraic aspects, the illustrations of RPIA are provided. We prove that RPIA constructs a series of fitting curves (resp., surfaces), whose limit curve (resp., surface) can converge in expectation to the least-squares fitting result of the given data points. Numerical experiments are given to confirm our results and show the benefits of RPIA

    Interpolatory Catmull-Clark volumetric subdivision over unstructured hexahedral meshes for modeling and simulation applications

    Get PDF
    International audienceVolumetric modeling is an important topic for material modeling and isogeometric simulation. In this paper, two kinds of interpolatory Catmull-Clark volumetric subdivision approaches over unstructured hexahedral meshes are proposed based on the limit point formula of Catmull-Clark subdivision volume. The basic idea of the first method is to construct a new control lattice, whose limit volume by the CatmullClark subdivision scheme interpolates vertices of the original hexahedral mesh. The new control lattice is derived by the local push-back operation from one CatmullClark subdivision step with modified geometric rules. This interpolating method is simple and efficient, and several shape parameters are involved in adjusting the shape of the limit volume. The second method is based on progressive-iterative approximation using limit point formula. At each iteration step, we progressively modify vertices of an original hexahedral mesh to generate a new control lattice whose limit volume interpolates all vertices in the original hexahedral mesh. The convergence proof of the iterative process is also given. The interpolatory subdivision volume has C 2-smoothness at the regular region except around extraordinary vertices and edges. Furthermore, the proposed interpolatory volumetric subdivision methods can be used not only for geometry interpolation, but also for material attribute interpolation in the field of volumetric material modeling. The application of the proposed volumetric subdivision approaches on isogeometric analysis is also given with several examples

    Efficient Object-Based Hierarchical Radiosity Methods

    Get PDF
    The efficient generation of photorealistic images is one of the main subjects in the field of computer graphics. In contrast to simple image generation which is directly supported by standard 3D graphics hardware, photorealistic image synthesis strongly adheres to the physics describing the flow of light in a given environment. By simulating the energy flow in a 3D scene global effects like shadows and inter-reflections can be rendered accurately. The hierarchical radiosity method is one way of computing the global illumination in a scene. Due to its limitation to purely diffuse surfaces solutions computed by this method are view independent and can be examined in real-time walkthroughs. Additionally, the physically based algorithm makes it well suited for lighting design and architectural visualization. The focus of this thesis is the application of object-oriented methods to the radiosity problem. By consequently keeping and using object information throughout all stages of the algorithms several contributions to the field of radiosity rendering could be made. By introducing a new meshing scheme, it is shown how curved objects can be treated efficiently by hierarchical radiosity algorithms. Using the same paradigm the radiosity computation can be distributed in a network of computers. A parallel implementation is presented that minimizes communication costs while obtaining an efficient speedup. Radiosity solutions for very large scenes became possible by the use of clustering algorithms. Groups of objects are combined to clusters to simulate the energy exchange on a higher abstraction level. It is shown how the clustering technique can be improved without loss in image quality by applying the same data-structure for both, the visibility computations and the efficient radiosity simulation.Eines der Schwerpunktthemen in der Computergraphik ist die effiziente Erzeugung von fotorealistischen Bildern. Im Gegensatz zur einfachen Bilderzeugung, die bereits durch gaengige 3D-Grafikhardware unterstuetzt wird, gehorcht die fotorealistische Bildsynthese physikalischen Gesetzen, die die Lichtausbreitung innerhalb einer bestimmten Umgebung beschreiben. Durch die Simulation der Energieausbreitung in einer dreidimensionalen Szene koennen globale Effekte wie Schatten und mehrfache Reflektionen wirklichkeitstreu dargestellt werden. Die hierarchische Radiositymethode (Hierarchical Radiosity) ist eine Moeglichkeit, um die globale Beleuchtung innerhalb einer Szene zu berechnen. Da diese Methode auf die Verwendung von rein diffus reflektierenden Oberflaechen beschraenkt ist, sind damit errechnete Loesungen blickwinkelunabhaengig und lassen sich in Echtzeit am Bildschirm durchwandern. Zudem ist dieser Algorithmus aufgrund der verwendeten physikalischen Grundlagen sehr gut zur Beleuchtungssimulation und Architekturvisualisierung geeignet. Den Schwerpunkt dieser Doktorarbeit stellt die Anwendung objektbasierter Methoden auf das Radiosityproblem dar. Durch konsequente Ausnutzung von Objektinformationen waehrend aller Berechnungsschritte konnten verschiedene Verbesserungen im Rahmen der hierarchischen Radiositymethode erzielt werden. Gekruemmte Objekte koennen aufgrund eines neuen Flaechenunterteilungsverfahrens nun effizient durch den hierarchischen Radiosityalgorithmus dargestellt werden. Dieses Verfahren ermoeglicht ebenso eine effiziente Parallelisierung des hierarchischen Radiosityalgorithmus. Es wird ein parallele Implementierung vorgestellt, die unter Minimierung der Kommunikationskosten eine effiziente Geschwindigkeitssteigerung erzielt. Radiosityberechnungen fuer sehr grosse Szenen sind nur durch Verwendung sogenannter Clustering-Algorithmen moeglich. Dabei werden Gruppen von Objekten zu Clustern kombiniert um den Energieaustausch zwischen Oberflaechen stellvertretend auf einem hoeheren Abstraktionsniveau durchzufuehren. Durch Verwendung derselben Datenstruktur fuer Sichtbarkeitsberechnungen und fuer die Steuerung der Radiositysimulation wird gezeigt, wie das Clusteringverfahren ohne Qualitaetsverluste verbessert werden kann

    Discrete curvature approximations and segmentation of polyhedral surfaces

    Get PDF
    The segmentation of digitized data to divide a free form surface into patches is one of the key steps required to perform a reverse engineering process of an object. To this end, discrete curvature approximations are introduced as the basis of a segmentation process that lead to a decomposition of digitized data into areas that will help the construction of parametric surface patches. The approach proposed relies on the use of a polyhedral representation of the object built from the digitized data input. Then, it is shown how noise reduction, edge swapping techniques and adapted remeshing schemes can participate to different preparation phases to provide a geometry that highlights useful characteristics for the segmentation process. The segmentation process is performed with various approximations of discrete curvatures evaluated on the polyhedron produced during the preparation phases. The segmentation process proposed involves two phases: the identification of characteristic polygonal lines and the identification of polyhedral areas useful for a patch construction process. Discrete curvature criteria are adapted to each phase and the concept of invariant evaluation of curvatures is introduced to generate criteria that are constant over equivalent meshes. A description of the segmentation procedure is provided together with examples of results for free form object surfaces
    • …
    corecore