3,036 research outputs found

    Weighted logics for artificial intelligence : an introductory discussion

    Get PDF
    International audienceBefore presenting the contents of the special issue, we propose a structured introductory overview of a landscape of the weighted logics (in a general sense) that can be found in the Artificial Intelligence literature, highlighting their fundamental differences and their application areas

    Learning Task Specifications from Demonstrations

    Full text link
    Real world applications often naturally decompose into several sub-tasks. In many settings (e.g., robotics) demonstrations provide a natural way to specify the sub-tasks. However, most methods for learning from demonstrations either do not provide guarantees that the artifacts learned for the sub-tasks can be safely recombined or limit the types of composition available. Motivated by this deficit, we consider the problem of inferring Boolean non-Markovian rewards (also known as logical trace properties or specifications) from demonstrations provided by an agent operating in an uncertain, stochastic environment. Crucially, specifications admit well-defined composition rules that are typically easy to interpret. In this paper, we formulate the specification inference task as a maximum a posteriori (MAP) probability inference problem, apply the principle of maximum entropy to derive an analytic demonstration likelihood model and give an efficient approach to search for the most likely specification in a large candidate pool of specifications. In our experiments, we demonstrate how learning specifications can help avoid common problems that often arise due to ad-hoc reward composition.Comment: NIPS 201

    Conditional Preference Nets and Possibilistic Logic

    Get PDF
    International audienceCP-nets (Conditional preference networks) are a well-known compact graphical representation of preferences in Artificial Intelligence, that can be viewed as a qualitative counterpart to Bayesian nets. In case of binary attributes it captures specific partial orderings over Boolean interpretations where strict preference statements are defined between interpretations which differ by a single flip of an attribute value. It respects preferential independence encoded by the ceteris paribus property. The popularity of this approach has motivated some comparison with other preference representation setting such as possibilistic logic. In this paper, we focus our discussion on the possibilistic representation of CP-nets, and the question whether it is possible to capture the CP-net partial order over interpretations by means of a possibilistic knowledge base and a suitable semantics. We show that several results in the literature on the alleged faithful representation of CP-nets by possibilistic bases are questionable. To this aim we discuss some canonical examples of CP-net topologies where the considered possibilistic approach fails to exactly capture the partial order induced by CP-nets, thus shedding light on the difficulties encountered when trying to reconcile the two frameworks

    A Discussion Game for the Credulous Decision Problem of Abstract Dialectical Frameworks under Preferred Semantics

    Get PDF
    Abstract dialectical frameworks (ADFs) have been introduced as a general formalism for modeling and evaluating argumentation. However, the role of discussion in reasoning in ADFs has not been clarified well so far. The current work presents a discussion game, as a proof method, to answer credulous decision problems of ADFs under preferred semantics. The game can be the basis for an algorithm that can be used not only for answering the decision problem but also for human-machine interaction

    Online Handbook of Argumentation for AI: Volume 1

    Get PDF
    This volume contains revised versions of the papers selected for the first volume of the Online Handbook of Argumentation for AI (OHAAI). Previously, formal theories of argument and argument interaction have been proposed and studied, and this has led to the more recent study of computational models of argument. Argumentation, as a field within artificial intelligence (AI), is highly relevant for researchers interested in symbolic representations of knowledge and defeasible reasoning. The purpose of this handbook is to provide an open access and curated anthology for the argumentation research community. OHAAI is designed to serve as a research hub to keep track of the latest and upcoming PhD-driven research on the theory and application of argumentation in all areas related to AI.Comment: editor: Federico Castagna and Francesca Mosca and Jack Mumford and Stefan Sarkadi and Andreas Xydi

    An Empirical Evaluation of the Inferential Capacity of Defeasible Argumentation, Non-monotonic Fuzzy Reasoning and Expert Systems

    Get PDF
    Several non-monotonic formalisms exist in the field of Artificial Intelligence for reasoning under uncertainty. Many of these are deductive and knowledge-driven, and also employ procedural and semi-declarative techniques for inferential purposes. Nonetheless, limited work exist for the comparison across distinct techniques and in particular the examination of their inferential capacity. Thus, this paper focuses on a comparison of three knowledge-driven approaches employed for non-monotonic reasoning, namely expert systems, fuzzy reasoning and defeasible argumentation. A knowledge-representation and reasoning problem has been selected: modelling and assessing mental workload. This is an ill-defined construct, and its formalisation can be seen as a reasoning activity under uncertainty. An experimental work was performed by exploiting three deductive knowledge bases produced with the aid of experts in the field. These were coded into models by employing the selected techniques and were subsequently elicited with data gathered from humans. The inferences produced by these models were in turn analysed according to common metrics of evaluation in the field of mental workload, in specific validity and sensitivity. Findings suggest that the variance of the inferences of expert systems and fuzzy reasoning models was higher, highlighting poor stability. Contrarily, that of argument-based models was lower, showing a superior stability of its inferences across knowledge bases and under different system configurations. The originality of this research lies in the quantification of the impact of defeasible argumentation. It contributes to the field of logic and non-monotonic reasoning by situating defeasible argumentation among similar approaches of non-monotonic reasoning under uncertainty through a novel empirical comparison

    An "infusion" approach to critical thinking: Moore on the critical thinking debate

    Get PDF
    This paper argues that general skills and the varieties of subject-specific discourse are both important for teaching, learning and practising critical thinking. The former is important because it outlines the principles of good reasoning simpliciter (what constitutes sound reasoning patterns, invalid inferences, and so on). The latter is important because it outlines how the general principles are used and deployed in the service of ‘academic tribes’. Because critical thinking skills are—in part, at least—general skills, they can be applied to all disciplines and subject-matter indiscriminately. General skills can help us assess reasoning independently of the vagaries of the linguistic discourse we express arguments in. The paper looks at the debate between the ‘specifists’—those who stress the importance of critical thinking understood as a subject-specific discourse—and the ‘generalists’—those that stress the importance of critical thinking understood independently of disciplinary context. The paper suggests that the ‘debate’ between the specifists and the generalists amounts to a fallacy of the false alternative, and presents a combinatory-‘infusion’ approach to critical thinking
    • 

    corecore