43,157 research outputs found

    Fuzzy Maximum Satisfiability

    Full text link
    In this paper, we extend the Maximum Satisfiability (MaxSAT) problem to {\L}ukasiewicz logic. The MaxSAT problem for a set of formulae {\Phi} is the problem of finding an assignment to the variables in {\Phi} that satisfies the maximum number of formulae. Three possible solutions (encodings) are proposed to the new problem: (1) Disjunctive Linear Relations (DLRs), (2) Mixed Integer Linear Programming (MILP) and (3) Weighted Constraint Satisfaction Problem (WCSP). Like its Boolean counterpart, the extended fuzzy MaxSAT will have numerous applications in optimization problems that involve vagueness.Comment: 10 page

    Multi crteria decision making and its applications : a literature review

    Get PDF
    This paper presents current techniques used in Multi Criteria Decision Making (MCDM) and their applications. Two basic approaches for MCDM, namely Artificial Intelligence MCDM (AIMCDM) and Classical MCDM (CMCDM) are discussed and investigated. Recent articles from international journals related to MCDM are collected and analyzed to find which approach is more common than the other in MCDM. Also, which area these techniques are applied to. Those articles are appearing in journals for the year 2008 only. This paper provides evidence that currently, both AIMCDM and CMCDM are equally common in MCDM

    A Bibliography on Fuzzy Automata, Grammars and Lanuages

    Get PDF
    This bibliography contains references to papers on fuzzy formal languages, the generation of fuzzy languages by means of fuzzy grammars, the recognition of fuzzy languages by fuzzy automata and machines, as well as some applications of fuzzy set theory to syntactic pattern recognition, linguistics and natural language processing

    Aggregated fuzzy answer set programming

    Get PDF
    Fuzzy Answer Set programming (FASP) is an extension of answer set programming (ASP), based on fuzzy logic. It allows to encode continuous optimization problems in the same concise manner as ASP allows to model combinatorial problems. As a result of its inherent continuity, rules in FASP may be satisfied or violated to certain degrees. Rather than insisting that all rules are fully satisfied, we may only require that they are satisfied partially, to the best extent possible. However, most approaches that feature partial rule satisfaction limit themselves to attaching predefined weights to rules, which is not sufficiently flexible for most real-life applications. In this paper, we develop an alternative, based on aggregator functions that specify which (combination of) rules are most important to satisfy. We extend upon previous work by allowing aggregator expressions to define partially ordered preferences, and by the use of a fixpoint semantics
    • 

    corecore