132 research outputs found

    Attribute Weighted Fuzzy Interpolative Reasoning

    Get PDF

    Fuzzy Rule Based Interpolative Reasoning Supported by Attribute Ranking

    Get PDF
    Using fuzzy rule interpolation (FRI) interpolative reasoning can be effectively performed with a sparse rule base where a given system observation does not match any fuzzy rules. Whilst offering a potentially powerful inference mechanism, in the current literature, typical representation of fuzzy rules in FRI assumes that all attributes in the rules are of equal significance in deriving the consequents. This is a strong assumption in practical applications, thereby often leading to less accurate interpolated results. To address this challenging problem, this work employs feature selection (FS) techniques to adjudge the relative significance of individual attributes and therefore, to differentiate the contributions of the rule antecedents and their impact upon FRI. This is feasible because FS provides a readily adaptable mechanism for evaluating and ranking attributes, being capable of selecting more informative features. Without requiring any acquisition of real observations, based on the originally given sparse rule base, the individual scores are computed using a set of training samples that are artificially created from the rule base through an innovative reverse engineering procedure. The attribute scores are integrated within the popular scale and move transformation-based FRI algorithm (while other FRI approaches may be similarly extended following the same idea), forming a novel method for attribute ranking-supported fuzzy interpolative reasoning. The efficacy and robustness of the proposed approach is verified through systematic experimental examinations in comparison with the original FRI technique, over a range of benchmark classification problems while utilising different FS methods. A specific and important outcome is that supported by attribute ranking, only two (i.e., the least number of) nearest adjacent rules are required to perform accurate interpolative reasoning, avoiding the need of searching for and computing with multiple rules beyond the immediate neighbourhood of a given observationpublishersversionPeer reviewe

    Transformation-Based Fuzzy Rule Interpolation With Mahalanobis Distance Measures Supported by Choquet Integral

    Get PDF
    Fuzzy rule interpolation (FRI) strongly supports approximate inference when a new observation matches no rules, through selecting and subsequently interpolating appropriate rules close to the observation from the given (sparse) rule base. Traditional ways of implementing the critical rule selection process are typically based on the exploitation of Euclidean distances between the observation and rules. It is conceptually straightforward for implementation but applying this distance metric may systematically lead to inferior results because it fails to reflect the variations of the relevance or significance levels amongst different domain features. To address this important issue, a novel transformation-based FRI approach is presented, on the basis of utilising the Mahalanobis distance metric. The new FRI method works by transforming a given sparse rule base into a coordinates system where the distance between instances of the same category becomes closer while that between different categories becomes further apart. In so doing, when an observation is present that matches no rules, the most relevant neighbouring rules to implement the required interpolation are more likely to be selected. Following this, the scale and move factors within the classical transformation-based FRI procedure are also modified by Choquet integral. Systematic experimental investigation over a range of classification problems demonstrates that the proposed approach remarkably outperforms the existing state-of-the-art FRI methods in both accuracy and efficiency
    • …
    corecore