13 research outputs found

    Attribute Weighted Fuzzy Interpolative Reasoning

    Get PDF

    Fuzzy Rule Based Interpolative Reasoning Supported by Attribute Ranking

    Get PDF
    Using fuzzy rule interpolation (FRI) interpolative reasoning can be effectively performed with a sparse rule base where a given system observation does not match any fuzzy rules. Whilst offering a potentially powerful inference mechanism, in the current literature, typical representation of fuzzy rules in FRI assumes that all attributes in the rules are of equal significance in deriving the consequents. This is a strong assumption in practical applications, thereby often leading to less accurate interpolated results. To address this challenging problem, this work employs feature selection (FS) techniques to adjudge the relative significance of individual attributes and therefore, to differentiate the contributions of the rule antecedents and their impact upon FRI. This is feasible because FS provides a readily adaptable mechanism for evaluating and ranking attributes, being capable of selecting more informative features. Without requiring any acquisition of real observations, based on the originally given sparse rule base, the individual scores are computed using a set of training samples that are artificially created from the rule base through an innovative reverse engineering procedure. The attribute scores are integrated within the popular scale and move transformation-based FRI algorithm (while other FRI approaches may be similarly extended following the same idea), forming a novel method for attribute ranking-supported fuzzy interpolative reasoning. The efficacy and robustness of the proposed approach is verified through systematic experimental examinations in comparison with the original FRI technique, over a range of benchmark classification problems while utilising different FS methods. A specific and important outcome is that supported by attribute ranking, only two (i.e., the least number of) nearest adjacent rules are required to perform accurate interpolative reasoning, avoiding the need of searching for and computing with multiple rules beyond the immediate neighbourhood of a given observationpublishersversionPeer reviewe

    Intrusion Detection System by Fuzzy Interpolation

    Get PDF
    Network intrusion detection systems identify malicious connections and thus help protect networks from attacks. Various data-driven approaches have been used in the development of network intrusion detection systems, which usually lead to either very complex systems or poor generalization ability due to the complexity of this challenge. This paper proposes a data-driven network intrusion detection system using fuzzy interpolation in an effort to address the aforementioned limitations. In particular, the developed system equipped with a sparse rule base not only guarantees the online performance of intrusion detection, but also allows the generation of security alerts from situations which are not directly covered by the existing knowledge base. The proposed system has been applied to a well-known data set for system validation and evaluation with competitive results generated

    Transformation-Based Fuzzy Rule Interpolation Using Interval Type-2 Fuzzy Sets

    Get PDF
    In support of reasoning with sparse rule bases, fuzzy rule interpolation (FRI) offers a helpful inference mechanism for deriving an approximate conclusion when a given observation has no overlap with any rule in the existing rule base. One of the recent and popular FRI approaches is the scale and move transformation-based rule interpolation, known as T-FRI in the literature. It supports both interpolation and extrapolation with multiple multi-antecedent rules. However, the difficult problem of defining the precise-valued membership functions required in the representation of fuzzy rules, or of the observations, restricts its applications. Fortunately, this problem can be alleviated through the use of type-2 fuzzy sets, owing to the fact that the membership functions of such fuzzy sets are themselves fuzzy, providing a more flexible means of modelling. This paper therefore, extends the existing T-FRI approach using interval type-2 fuzzy sets, which covers the original T-FRI as its specific instance. The effectiveness of this extension is demonstrated by experimental investigations and, also, by a practical application in comparison to the state-of-the-art alternative approach developed using rough-fuzzy setspublishersversionPeer reviewe

    Dynamic QoS Solution for Enterprise Networks Using TSK Fuzzy Interpolation

    Get PDF
    The Quality of Services (QoS) is the measure of data transmission quality and service availability of a network, aiming to maintain the data, especially delay-sensitive data such as VoIP, to be transmitted over the network with the required quality. Major network device manufacturers have each developed their own smart dynamic QoS solutions, such as AutoQoS supported by Cisco, CoS (Class of Service) by Netgear devices, and QoS Maps on SROS (Secure Router Operating System) provided by HP, to maintain the service level of network traffic. Such smart QoS solutions usually only work for manufacture qualified devices and otherwise only a pre-defined static policy mapping can be applied. This paper presents a dynamic QoS solution based on the differentiated services (DiffServ) approach for enterprise networks, which is able to modify the priority level of a packet in real time by adjusting the value of Differentiated Services Code Point (DSCP) in Internet Protocol (IP) header of network packets. This is implemented by a 0-order TSK fuzzy model with a sparse rule base which is developed by considering the current network delay, application desired priority level and user current priority group. DSCP values are dynamically generated by the TSK fuzzy model and updated in real time. The proposed system has been evaluated in a real network environment with promising results generated

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering
    corecore