1,302 research outputs found

    Modeling the interdependency of low-priority congestion control and active queue management

    Full text link
    Recently, a negative interplay has been shown to arise when scheduling/AQM techniques and low-priority congestion control protocols are used together: namely, AQM resets the relative level of priority among congestion control protocols. This work explores this issue by (i) studying a fluid model that describes system dynamics of heterogeneous congestion control protocols competing on a bottleneck link governed by AQM and (ii) proposing a system level solution able to reinstate priorities among protocols.Comment: 9 page

    The Failed Promise of User Fees: Empirical Evidence from the United States Patent and Trademark Office

    Get PDF
    In an attempt to shed light on the impact of user-fee financing structures on the behavior of administrative agencies, we explore the relationship between the funding structure of the Patent and Trademark Office (PTO) and its examination practices. We suggest that the PTO’s reliance on prior grantees to subsidize current applicants exposes the Agency to a risk that its obligatory costs will surpass incoming fee collections. When such risks materialize, we hypothesize, and thereafter document, that the PTO will restore financial balance by extending preferential examination treatment—i.e., higher granting propensities and/or shorter wait times—to some technologies over others

    The Failed Promise of User Fees: Empirical Evidence from the United States Patent and Trademark Office

    Get PDF
    In an attempt to shed light on the impact of user-fee financing structures on the behavior of administrative agencies, we explore the relationship between the funding structure of the Patent and Trademark Office (PTO) and its examination practices. We suggest that the PTO’s reliance on prior grantees to subsidize current applicants exposes the Agency to a risk that its obligatory costs will surpass incoming fee collections. When such risks materialize, we hypothesize, and thereafter document, that the PTO will restore financial balance by extending preferential examination treatment—i.e., higher granting propensities and/or shorter wait times—to some technologies over others

    Improving Individual Flow Performance with Multiple Queue Fair Queuing

    Get PDF
    Fair Queuing (FQ) algorithms provide isolation between packet flows, allowing max-min fair sharing of a link even when flows misbehave. However, fairness comes at the expense of per-flow state. To keep the memory requirement independent of the flow count, the router can isolate aggregates of flows, rather than individual flows. We investigate the feasibility of protecting individual flows under such aggregate isolation in the context of Multiple Queue Fair Queuing (MQFQ), where the router maintains a fixed number of queues and associates multiple queues with each flow. MQFQ places packets in the shortest queue associated with their flow. The redundancy of multiple queues allows a flow to transmit at a fair rate even when one of its queues is congested. However, a misbehaving flow is able to acquire a larger than fair share of the bottleneck link capacity. We also discuss important implementation issues such as avoidance of packet reordering

    Novel algorithms for fair bandwidth sharing on counter rotating rings

    Get PDF
    Rings are often preferred technology for networks as ring networks can virtually create fully connected mesh networks efficiently and they are also easy to manage. However, providing fair service to all the stations on the ring is not always easy to achieve. In order to capitalize on the advantages of ring networks, new buffer insertion techniques, such as Spatial Reuse Protocol (SRP), were introduced in early 2000s. As a result, a new standard known as IEEE 802.17 Resilient Packet Ring was defined in 2004 by the IEEE Resilient Packet Ring (RPR) Working Group. Since then two addenda have been introduced; namely, IEEE 802.17a and IEEE 802.17b in 2006 and 2010, respectively. During this standardization process, weighted fairness and queue management schemes were proposed to be used in the standard. As shown in this dissertation, these schemes can be applied to solve the fairness issues noted widely in the research community as radical changes are not practical to introduce within the context of a standard. In this dissertation, the weighted fairness aspects of IEEE 802.17 RPR (in the aggressive mode of operation) are studied; various properties are demonstrated and observed via network simulations, and additional improvements are suggested. These aspects have not been well studied until now, and can be used to alleviate some of the issues observed in the fairness algorithm under some scenarios. Also, this dissertation focuses on the RPR Medium Access Control (MAC) Client implementation of the IEEE 802.17 RPR MAC in the aggressive mode of operation and introduces a new active queue management scheme for ring networks that achieves higher overall utilization of the ring bandwidth with simpler and less expensive implementation than the generic implementation provided in the standard. The two schemes introduced in this dissertation provide performance comparable to the per destination queuing implementation, which yields the best achievable performance at the expense of the cost of implementation. In addition, till now the requirements for sizing secondary transit queue of IEEE 802.17 RPR stations (in the aggressive mode of operation) have not been properly investigated. The analysis and suggested improvements presented in this dissertation are then supported by performance evaluation results and theoretical calculations. Last, but not least, the impact of using different capacity links on the same ring has not been investigated before from the ring utilization and fairness points of view. This dissertation also investigates utilizing different capacity links in RPR and proposes a mechanism to support the same

    How can routers help Internet economics?

    Full text link

    Congestion Control for Streaming Media

    Get PDF
    The Internet has assumed the role of the underlying communication network for applications such as file transfer, electronic mail, Web browsing and multimedia streaming. Multimedia streaming, in particular, is growing with the growth in power and connectivity of today\u27s computers. These Internet applications have a variety of network service requirements and traffic characteristics, which presents new challenges to the single best-effort service of today\u27s Internet. TCP, the de facto Internet transport protocol, has been successful in satisfying the needs of traditional Internet applications, but fails to satisfy the increasingly popular delay sensitive multimedia applications. Streaming applications often use UDP without a proper congestion avoidance mechanisms, threatening the well-being of the Internet. This dissertation presents an IP router traffic management mechanism, referred to as Crimson, that can be seamlessly deployed in the current Internet to protect well-behaving traffic from misbehaving traffic and support Quality of Service (QoS) requirements of delay sensitive multimedia applications as well as traditional Internet applications. In addition, as a means to enhance Internet support for multimedia streaming, this dissertation report presents design and evaluation of a TCP-Friendly and streaming-friendly transport protocol called the Multimedia Transport Protocol (MTP). Through a simulation study this report shows the Crimson network efficiently handles network congestion and minimizes queuing delay while providing affordable fairness protection from misbehaving flows over a wide range of traffic conditions. In addition, our results show that MTP offers streaming performance comparable to that provided by UDP, while doing so under a TCP-Friendly rate

    A Real-Time Communication Framework for Wireless Sensor Networks

    Get PDF
    Recent advances in miniaturization and low power design have led to a flurry of activity in wireless sensor networks. Sensor networks have different constraints than traditional wired networks. A wireless sensor network is a special network with large numbers of nodes equipped with embedded processors, sensors, and radios. These nodes collaborate to accomplish a common task such as environment monitoring or asset tracking. In many applications, sensor nodes will be deployed in an ad-hoc fashion without careful planning. They must organize themselves to form a multihop, wireless communication network. In sensor network environments, much research has been conducted in areas such as power consumption, self-organisation techniques, routing between the sensors, and the communication between the sensor and the sink. On the other hand, real-time communication with the Quality of Service (QoS) concept in wireless sensor networks is still an open research field. Most protocols either ignore real time or simply attempt to process as fast as possible and hope that this speed is sufficient to meet the deadline. However, the introduction of real-time communication has created additional challenges in this area. The sensor node spends most of its life routing packets from one node to another until the packet reaches the sink; therefore, the node functions as a small router most of the time. Since sensor networks deal with time-critical applications, it is often necessary for communication to meet real time constraints. However, research that deals with providing QoS guarantees for real-time traffic in sensor networks is still in its infancy.This thesis presents a real-time communication framework to provide quality of service in sensor networks environments. The proposed framework consists of four components: First, present an analytical model for implementing Priority Queuing (PQ) in a sensor node to calculate the queuing delay. The exact packet delay for corresponding classes is calculated. Further, the analytical results are validated through an extensive simulation study. Second, report on a novel analytical model based on a limited service polling discipline. The model is based on an M/D/1 queuing system (a special class of M/G/1 queuing systems), which takes into account two different classes of traffic in a sensor node. The proposed model implements two queues in a sensor node that are served in a round robin fashion. The exact queuing delay in a sensor node for corresponding classes is calculated. Then, the analytical results are validated through an extensive simulation study. Third, exhibit a novel packet delivery mechanism, namely the Multiple Level Stateless Protocol (MLSP), as a real-time protocol for sensor networks to guarantee the traffic in wireless sensor networks. MLSP improves the packet loss rate and the handling of holes in sensor network much better than its counterpart, MMSPEED. It also introduces the k-limited polling model for the first time. In addition, the whole sending packets dropped significantly compared to MMSPEED, which it leads to decrease the consumption power. Fourth, explain a new framework for moving data from the sink to the user, at a low cost and low power, using the Universal Mobile Telecommunication System (UMTS), which is standard for the Third Generation Mobile System (3G). The integration of sensor networks with the 3G mobile network infrastructure will reduce the cost of building new infrastructures and enable the large-scale deployment of sensor network

    TCP performance enhancement in wireless networks via adaptive congestion control and active queue management

    Get PDF
    The transmission control protocol (TCP) exhibits poor performance when used in error-prone wireless networks. Remedy to this problem has been an active research area. However, a widely accepted and adopted solution is yet to emerge. Difficulties of an acceptable solution lie in the areas of compatibility, scalability, computational complexity and the involvement of intermediate routers and switches. This dissertation rexriews the current start-of-the-art solutions to TCP performance enhancement, and pursues an end-to-end solution framework to the problem. The most noticeable cause of the performance degradation of TCP in wireless networks is the higher packet loss rate as compared to that in traditional wired networks. Packet loss type differentiation has been the focus of many proposed TCP performance enhancement schemes. Studies conduced by this dissertation research suggest that besides the standard TCP\u27s inability of discriminating congestion packet losses from losses related to wireless link errors, the standard TCP\u27s additive increase and multiplicative decrease (AIMD) congestion control algorithm itself needs to be redesigned to achieve better performance in wireless, and particularly, high-speed wireless networks. This dissertation proposes a simple, efficient, and effective end-to-end solution framework that enhances TCP\u27s performance through techniques of adaptive congestion control and active queue management. By end-to-end, it means a solution with no requirement of routers being wireless-aware or wireless-specific . TCP-Jersey has been introduced as an implementation of the proposed solution framework, and its performance metrics have been evaluated through extensive simulations. TCP-Jersey consists of an adaptive congestion control algorithm at the source by means of the source\u27s achievable rate estimation (ARE) —an adaptive filter of packet inter-arrival times, a congestion indication algorithm at the links (i.e., AQM) by means of packet marking, and a effective loss differentiation algorithm at the source by careful examination of the congestion marks carried by the duplicate acknowledgment packets (DUPACK). Several improvements to the proposed TCP-Jersey have been investigated, including a more robust ARE algorithm, a less computationally intensive threshold marking algorithm as the AQM link algorithm, a more stable congestion indication function based on virtual capacity at the link, and performance results have been presented and analyzed via extensive simulations of various network configurations. Stability analysis of the proposed ARE-based additive increase and adaptive decrease (AJAD) congestion control algorithm has been conducted and the analytical results have been verified by simulations. Performance of TCP-Jersey has been compared to that of a perfect , but not practical, TCP scheme, and encouraging results have been observed. Finally the framework of the TCP-Jersey\u27s source algorithm has been extended and generalized for rate-based congestion control, as opposed to TCP\u27s window-based congestion control, to provide a design platform for applications, such as real-time multimedia, that do not use TCP as transport protocol yet do need to control network congestion as well as combat packet losses in wireless networks. In conclusion, the framework architecture presented in this dissertation that combines the adaptive congestion control and active queue management in solving the TCP performance degradation problem in wireless networks has been shown as a promising answer to the problem due to its simplistic design philosophy complete compatibility with the current TCP/IP and AQM practice, end-to-end architecture for scalability, and the high effectiveness and low computational overhead. The proposed implementation of the solution framework, namely TCP-Jersey is a modification of the standard TCP protocol rather than a completely new design of the transport protocol. It is an end-to-end approach to address the performance degradation problem since it does not require split mode connection establishment and maintenance using special wireless-aware software agents at the routers. The proposed solution also differs from other solutions that rely on the link layer error notifications for packet loss differentiation. The proposed solution is also unique among other proposed end-to-end solutions in that it differentiates packet losses attributed to wireless link errors from congestion induced packet losses directly from the explicit congestion indication marks in the DUPACK packets, rather than inferring the loss type based on packet delay or delay jitter as in many other proposed solutions; nor by undergoing a computationally expensive off-line training of a classification model (e.g., HMM), or a Bayesian estimation/detection process that requires estimations of a priori loss probability distributions of different loss types. The proposed solution is also scalable and fully compatible to the current practice in Internet congestion control and queue management, but with an additional function of loss type differentiation that effectively enhances TCP\u27s performance over error-prone wireless networks. Limitations of the proposed solution architecture and areas for future researches are also addressed
    • …
    corecore