1,277 research outputs found

    Pointwise Green function bounds and stability of combustion waves

    Get PDF
    Generalizing similar results for viscous shock and relaxation waves, we establish sharp pointwise Green function bounds and linearized and nonlinear stability for traveling wave solutions of an abstract viscous combustion model including both Majda's model and the full reacting compressible Navier--Stokes equations with artificial viscosity with general multi-species reaction and reaction-dependent equation of state, % under the necessary conditions of strong spectral stability, i.e., stable point spectrum of the linearized operator about the wave, transversality of the profile as a connection in the traveling-wave ODE, and hyperbolic stability of the associated Chapman--Jouguet (square-wave) approximation. Notably, our results apply to combustion waves of any type: weak or strong, detonations or deflagrations, reducing the study of stability to verification of a readily numerically checkable Evans function condition. Together with spectral results of Lyng and Zumbrun, this gives immediately stability of small-amplitude strong detonations in the small heat-release (i.e., fluid-dynamical) limit, simplifying and greatly extending previous results obtained by energy methods by Liu--Ying and Tesei--Tan for Majda's model and the reactive Navier--Stokes equations, respectively

    Conditional stability of unstable viscous shock waves in compressible gas dynamics and MHD

    Full text link
    Extending our previous work in the strictly parabolic case, we show that a linearly unstable Lax-type viscous shock solution of a general quasilinear hyperbolic--parabolic system of conservation laws possesses a translation-invariant center stable manifold within which it is nonlinearly orbitally stable with respect to small L1∩H3L^1\cap H^3 perturbations, converging time-asymptotically to a translate of the unperturbed wave. That is, for a shock with pp unstable eigenvalues, we establish conditional stability on a codimension-pp manifold of initial data, with sharp rates of decay in all LpL^p. For p=0p=0, we recover the result of unconditional stability obtained by Mascia and Zumbrun. The main new difficulty in the hyperbolic--parabolic case is to construct an invariant manifold in the absence of parabolic smoothing.Comment: 32p

    Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis

    Get PDF
    We consider the frequency domain form of proper orthogonal decomposition (POD) called spectral proper orthogonal decomposition (SPOD). Spectral POD is derived from a space-time POD problem for statistically stationary flows and leads to modes that each oscillate at a single frequency. This form of POD goes back to the original work of Lumley (Stochastic tools in turbulence, Academic Press, 1970), but has been overshadowed by a space-only form of POD since the 1990s. We clarify the relationship between these two forms of POD and show that SPOD modes represent structures that evolve coherently in space and time while space-only POD modes in general do not. We also establish a relationship between SPOD and dynamic mode decomposition (DMD); we show that SPOD modes are in fact optimally averaged DMD modes obtained from an ensemble DMD problem for stationary flows. Accordingly, SPOD modes represent structures that are dynamic in the same sense as DMD modes but also optimally account for the statistical variability of turbulent flows. Finally, we establish a connection between SPOD and resolvent analysis. The key observation is that the resolvent-mode expansion coefficients must be regarded as statistical quantities to ensure convergent approximations of the flow statistics. When the expansion coefficients are uncorrelated, we show that SPOD and resolvent modes are identical. Our theoretical results and the overall utility of SPOD are demonstrated using two example problems: the complex Ginzburg-Landau equation and a turbulent jet

    Pointwise Behavior of the Linearized Boltzmann Equation on Torus

    Full text link
    We study the pointwise behavior of the linearized Boltzmann equation on torus for non-smooth initial perturbation. The result reveals both the fluid and kinetic aspects of this model. The fluid-like waves are constructed as part of the long-wave expansion in the spectrum of the Fourier mode for the space variable, the time decay rate of the fluid-like waves depends on the size of the domain. We design a Picard-type iteration for constructing the increasingly regular kinetic-like waves, which are carried by the transport equations and have exponential time decay rate. Moreover, the mixture lemma plays an important role in constructing the kinetic-like waves, we supply a new proof of this lemma to avoid constructing explicit solution of the damped transport equation
    • …
    corecore