13,882 research outputs found

    Hybrid Collaborative Filtering with Autoencoders

    Get PDF
    Collaborative Filtering aims at exploiting the feedback of users to provide personalised recommendations. Such algorithms look for latent variables in a large sparse matrix of ratings. They can be enhanced by adding side information to tackle the well-known cold start problem. While Neu-ral Networks have tremendous success in image and speech recognition, they have received less attention in Collaborative Filtering. This is all the more surprising that Neural Networks are able to discover latent variables in large and heterogeneous datasets. In this paper, we introduce a Collaborative Filtering Neural network architecture aka CFN which computes a non-linear Matrix Factorization from sparse rating inputs and side information. We show experimentally on the MovieLens and Douban dataset that CFN outper-forms the state of the art and benefits from side information. We provide an implementation of the algorithm as a reusable plugin for Torch, a popular Neural Network framework

    Flavour Enhanced Food Recommendation

    Full text link
    We propose a mechanism to use the features of flavour to enhance the quality of food recommendations. An empirical method to determine the flavour of food is incorporated into a recommendation engine based on major gustatory nerves. Such a system has advantages of suggesting food items that the user is more likely to enjoy based upon matching with their flavour profile through use of the taste biological domain knowledge. This preliminary intends to spark more robust mechanisms by which flavour of food is taken into consideration as a major feature set into food recommendation systems. Our long term vision is to integrate this with health factors to recommend healthy and tasty food to users to enhance quality of life.Comment: In Proceedings of 5th International Workshop on Multimedia Assisted Dietary Management, Nice, France, October 21, 2019, MADiMa 2019, 6 page
    corecore