11,239 research outputs found

    Domain decomposition methods for compressed sensing

    Get PDF
    We present several domain decomposition algorithms for sequential and parallel minimization of functionals formed by a discrepancy term with respect to data and total variation constraints. The convergence properties of the algorithms are analyzed. We provide several numerical experiments, showing the successful application of the algorithms for the restoration 1D and 2D signals in interpolation/inpainting problems respectively, and in a compressed sensing problem, for recovering piecewise constant medical-type images from partial Fourier ensembles.Comment: 4 page

    Multi-frequency image reconstruction for radio-interferometry with self-tuned regularization parameters

    Full text link
    As the world's largest radio telescope, the Square Kilometer Array (SKA) will provide radio interferometric data with unprecedented detail. Image reconstruction algorithms for radio interferometry are challenged to scale well with TeraByte image sizes never seen before. In this work, we investigate one such 3D image reconstruction algorithm known as MUFFIN (MUlti-Frequency image reconstruction For radio INterferometry). In particular, we focus on the challenging task of automatically finding the optimal regularization parameter values. In practice, finding the regularization parameters using classical grid search is computationally intensive and nontrivial due to the lack of ground- truth. We adopt a greedy strategy where, at each iteration, the optimal parameters are found by minimizing the predicted Stein unbiased risk estimate (PSURE). The proposed self-tuned version of MUFFIN involves parallel and computationally efficient steps, and scales well with large- scale data. Finally, numerical results on a 3D image are presented to showcase the performance of the proposed approach

    A Non-Local Structure Tensor Based Approach for Multicomponent Image Recovery Problems

    Full text link
    Non-Local Total Variation (NLTV) has emerged as a useful tool in variational methods for image recovery problems. In this paper, we extend the NLTV-based regularization to multicomponent images by taking advantage of the Structure Tensor (ST) resulting from the gradient of a multicomponent image. The proposed approach allows us to penalize the non-local variations, jointly for the different components, through various ℓ1,p\ell_{1,p} matrix norms with p≥1p \ge 1. To facilitate the choice of the hyper-parameters, we adopt a constrained convex optimization approach in which we minimize the data fidelity term subject to a constraint involving the ST-NLTV regularization. The resulting convex optimization problem is solved with a novel epigraphical projection method. This formulation can be efficiently implemented thanks to the flexibility offered by recent primal-dual proximal algorithms. Experiments are carried out for multispectral and hyperspectral images. The results demonstrate the interest of introducing a non-local structure tensor regularization and show that the proposed approach leads to significant improvements in terms of convergence speed over current state-of-the-art methods
    • …
    corecore