4,653 research outputs found

    Efficiently Clustering Very Large Attributed Graphs

    Full text link
    Attributed graphs model real networks by enriching their nodes with attributes accounting for properties. Several techniques have been proposed for partitioning these graphs into clusters that are homogeneous with respect to both semantic attributes and to the structure of the graph. However, time and space complexities of state of the art algorithms limit their scalability to medium-sized graphs. We propose SToC (for Semantic-Topological Clustering), a fast and scalable algorithm for partitioning large attributed graphs. The approach is robust, being compatible both with categorical and with quantitative attributes, and it is tailorable, allowing the user to weight the semantic and topological components. Further, the approach does not require the user to guess in advance the number of clusters. SToC relies on well known approximation techniques such as bottom-k sketches, traditional graph-theoretic concepts, and a new perspective on the composition of heterogeneous distance measures. Experimental results demonstrate its ability to efficiently compute high-quality partitions of large scale attributed graphs.Comment: This work has been published in ASONAM 2017. This version includes an appendix with validation of our attribute model and distance function, omitted in the converence version for lack of space. Please refer to the published versio

    Persistent Homology Guided Force-Directed Graph Layouts

    Full text link
    Graphs are commonly used to encode relationships among entities, yet their abstractness makes them difficult to analyze. Node-link diagrams are popular for drawing graphs, and force-directed layouts provide a flexible method for node arrangements that use local relationships in an attempt to reveal the global shape of the graph. However, clutter and overlap of unrelated structures can lead to confusing graph visualizations. This paper leverages the persistent homology features of an undirected graph as derived information for interactive manipulation of force-directed layouts. We first discuss how to efficiently extract 0-dimensional persistent homology features from both weighted and unweighted undirected graphs. We then introduce the interactive persistence barcode used to manipulate the force-directed graph layout. In particular, the user adds and removes contracting and repulsing forces generated by the persistent homology features, eventually selecting the set of persistent homology features that most improve the layout. Finally, we demonstrate the utility of our approach across a variety of synthetic and real datasets

    Modeling the International-Trade Network: A Gravity Approach

    Full text link
    This paper investigates whether the gravity model (GM) can explain the statistical properties of the International Trade Network (ITN). We fit data on international-trade flows with a GM specification using alternative fitting techniques and we employ GM estimates to build a weighted predicted ITN, whose topological properties are compared to observed ones. Furthermore, we propose an estimation strategy to predict the binary ITN with a GM. We find that the GM successfully replicates the weighted-network structure of the ITN, only if one fixes its binary architecture equal to the observed one. Conversely, the GM performs very badly when asked to predict the presence of a link, or the level of the trade flow it carries, whenever the binary structure must be simultaneously estimated

    The International-Trade Network: Gravity Equations and Topological Properties

    Get PDF
    This paper begins to explore the determinants of the topological properties of the international - trade network (ITN). We fit bilateral-trade flows using a standard gravity equation to build a "residual" ITN where trade-link weights are depurated from geographical distance, size, border effects, trade agreements, and so on. We then compare the topological properties of the original and residual ITNs. We find that the residual ITN displays, unlike the original one, marked signatures of a complex system, and is characterized by a very different topological architecture. Whereas the original ITN is geographically clustered and organized around a few large-sized hubs, the residual ITN displays many small-sized but trade-oriented countries that, independently of their geographical position, either play the role of local hubs or attract large and rich countries in relatively complex trade-interaction patterns

    Modeling the International-Trade Network: A Gravity Approach

    Get PDF
    This paper investigates whether the gravity model (GM) can explain the statistical properties of the International Trade Network (ITN). We fit data on international-trade flows with a GM specification using alternative fitting techniques and we employ GM estimates to build a weighted predicted ITN, whose topological properties are compared to observed ones. Furthermore, we propose an estimation strategy to predict the binary ITN with a GM. We find that the GM successfully replicates the weighted-network structure of the ITN, only if one fixes its binary architecture equal to the observed one. Conversely, the GM performs very badly when asked to predict the presence of a link, or the level of the trade flow it carries, whenever the binary structure must be simultaneously estimated.International Trade Network; Gravity Equation; Weighted Network Analysis; Topological Properties; Econophysics
    corecore