1,568 research outputs found

    Weighted Time Warping for Temporal Segmentation of Multi-Parameter Physiological Signals

    Get PDF
    We present a novel approach to segmenting a quasiperiodic multi-parameter physiological signal in the presence of noise and transient corruption. We use Weighted Time Warping (WTW), to combine the partially correlated signals. We then use the relationship between the channels and the repetitive morphology of the time series to partition it into quasiperiodic units by matching it against a constantly evolving template. The method can accurately segment a multi-parameter signal, even when all the individual channels are so corrupted that they cannot be individually segmented. Experiments carried out on MIMIC, a multi-parameter physiological dataset recorded on ICU patients, demonstrate the effectiveness of the method. Our method performs as well as a widely used QRS detector on clean raw data, and outperforms it on corrupted data. Under additive noise at SNR 0 dB the average errors were 5:81 ms for our method and 303:48 ms for the QRS detector. Under transient corruption they were 2:89 ms and 387:32 ms respectively

    Characterizing aging in the human brainstem using quantitative multimodal MRI analysis.

    Get PDF
    Aging is ubiquitous to the human condition. The MRI correlates of healthy aging have been extensively investigated using a range of modalities, including volumetric MRI, quantitative MRI (qMRI), and diffusion tensor imaging. Despite this, the reported brainstem related changes remain sparse. This is, in part, due to the technical and methodological limitations in quantitatively assessing and statistically analyzing this region. By utilizing a new method of brainstem segmentation, a large cohort of 100 healthy adults were assessed in this study for the effects of aging within the human brainstem in vivo. Using qMRI, tensor-based morphometry (TBM), and voxel-based quantification (VBQ), the volumetric and quantitative changes across healthy adults between 19 and 75 years were characterized. In addition to the increased R2* in substantia nigra corresponding to increasing iron deposition with age, several novel findings were reported in the current study. These include selective volumetric loss of the brachium conjunctivum, with a corresponding decrease in magnetization transfer and increase in proton density (PD), accounting for the previously described “midbrain shrinkage.” Additionally, we found increases in R1 and PD in several pontine and medullary structures. We consider these changes in the context of well-characterized, functional age-related changes, and propose potential biophysical mechanisms. This study provides detailed quantitative analysis of the internal architecture of the brainstem and provides a baseline for further studies of neurodegenerative diseases that are characterized by early, pre-clinical involvement of the brainstem, such as Parkinson’s and Alzheimer’s diseases

    Flexible Time Series Matching for Clinical and Behavioral Data

    Get PDF
    Time Series data became broadly applied by the research community in the last decades after a massive explosion of its availability. Nonetheless, this rise required an improvement in the existing analysis techniques which, in the medical domain, would help specialists to evaluate their patients condition. One of the key tasks in time series analysis is pattern recognition (segmentation and classification). Traditional methods typically perform subsequence matching, making use of a pattern template and a similarity metric to search for similar sequences throughout time series. However, real-world data is noisy and variable (morphological distortions), making a template-based exact matching an elementary approach. Intending to increase flexibility and generalize the pattern searching tasks across domains, this dissertation proposes two Deep Learning-based frameworks to solve pattern segmentation and anomaly detection problems. Regarding pattern segmentation, a Convolution/Deconvolution Neural Network is proposed, learning to distinguish, point-by-point, desired sub-patterns from background content within a time series. The proposed framework was validated in two use-cases: electrocardiogram (ECG) and inertial sensor-based human activity (IMU) signals. It outperformed two conventional matching techniques, being capable of notably detecting the targeted cycles even in noise-corrupted or extremely distorted signals, without using any reference template nor hand-coded similarity scores. Concerning anomaly detection, the proposed unsupervised framework uses the reconstruction ability of Variational Autoencoders and a local similarity score to identify non-labeled abnormalities. The proposal was validated in two public ECG datasets (MITBIH Arrhythmia and ECG5000), performing cardiac arrhythmia identification. Results indicated competitiveness relative to recent techniques, achieving detection AUC scores of 98.84% (ECG5000) and 93.32% (MIT-BIH Arrhythmia).Dados de sĂ©ries temporais tornaram-se largamente aplicados pela comunidade cientĂ­fica nas Ășltimas decadas apĂłs um aumento massivo da sua disponibilidade. Contudo, este aumento exigiu uma melhoria das atuais tĂ©cnicas de anĂĄlise que, no domĂ­nio clĂ­nico, auxiliaria os especialistas na avaliação da condição dos seus pacientes. Um dos principais tipos de anĂĄlise em sĂ©ries temporais Ă© o reconhecimento de padrĂ”es (segmentação e classificação). MĂ©todos tradicionais assentam, tipicamente, em tĂ©cnicas de correspondĂȘncia em subsequĂȘncias, fazendo uso de um padrĂŁo de referĂȘncia e uma mĂ©trica de similaridade para procurar por subsequĂȘncias similares ao longo de sĂ©ries temporais. Todavia, dados do mundo real sĂŁo ruidosos e variĂĄveis (morfologicamente), tornando uma correspondĂȘncia exata baseada num padrĂŁo de referĂȘncia uma abordagem rudimentar. Pretendendo aumentar a flexibilidade da anĂĄlise de sĂ©ries temporais e generalizar tarefas de procura de padrĂ”es entre domĂ­nios, esta dissertação propĂ”e duas abordagens baseadas em Deep Learning para solucionar problemas de segmentação de padrĂ”es e deteção de anomalias. Acerca da segmentação de padrĂ”es, a rede neuronal de Convolução/Deconvolução proposta aprende a distinguir, ponto a ponto, sub-padrĂ”es pretendidos de conteĂșdo de fundo numa sĂ©rie temporal. O modelo proposto foi validado em dois casos de uso: sinais eletrocardiogrĂĄficos (ECG) e de sensores inerciais em atividade humana (IMU). Este superou duas tĂ©cnicas convencionais, sendo capaz de detetar os ciclos-alvo notavelmente, mesmo em sinais corrompidos por ruĂ­do ou extremamente distorcidos, sem o uso de nenhum padrĂŁo de referĂȘncia nem mĂ©tricas de similaridade codificadas manualmente. A respeito da deteção de anomalias, a tĂ©cnica nĂŁo supervisionada proposta usa a capacidade de reconstrução dos Variational Autoencoders e uma mĂ©trica de similaridade local para identificar anomalias desconhecidas. A proposta foi validada na identificação de arritmias cardĂ­acas em duas bases de dados pĂșblicas de ECG (MIT-BIH Arrhythmia e ECG5000). Os resultados revelam competitividade face a tĂ©cnicas recentes, alcançando mĂ©tricas AUC de deteção de 93.32% (MIT-BIH Arrhythmia) e 98.84% (ECG5000)

    Automatic Emotion Recognition: Quantifying Dynamics and Structure in Human Behavior.

    Full text link
    Emotion is a central part of human interaction, one that has a huge influence on its overall tone and outcome. Today's human-centered interactive technology can greatly benefit from automatic emotion recognition, as the extracted affective information can be used to measure, transmit, and respond to user needs. However, developing such systems is challenging due to the complexity of emotional expressions and their dynamics in terms of the inherent multimodality between audio and visual expressions, as well as the mixed factors of modulation that arise when a person speaks. To overcome these challenges, this thesis presents data-driven approaches that can quantify the underlying dynamics in audio-visual affective behavior. The first set of studies lay the foundation and central motivation of this thesis. We discover that it is crucial to model complex non-linear interactions between audio and visual emotion expressions, and that dynamic emotion patterns can be used in emotion recognition. Next, the understanding of the complex characteristics of emotion from the first set of studies leads us to examine multiple sources of modulation in audio-visual affective behavior. Specifically, we focus on how speech modulates facial displays of emotion. We develop a framework that uses speech signals which alter the temporal dynamics of individual facial regions to temporally segment and classify facial displays of emotion. Finally, we present methods to discover regions of emotionally salient events in a given audio-visual data. We demonstrate that different modalities, such as the upper face, lower face, and speech, express emotion with different timings and time scales, varying for each emotion type. We further extend this idea into another aspect of human behavior: human action events in videos. We show how transition patterns between events can be used for automatically segmenting and classifying action events. Our experimental results on audio-visual datasets show that the proposed systems not only improve performance, but also provide descriptions of how affective behaviors change over time. We conclude this dissertation with the future directions that will innovate three main research topics: machine adaptation for personalized technology, human-human interaction assistant systems, and human-centered multimedia content analysis.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133459/1/yelinkim_1.pd

    Progressive-Regressive Strategy for Biometrical Authentication

    Get PDF
    This chapter thoroughly investigates the use of the progressive–regressive strategy for biometrical authentication through the use of human gait and face images. A considerable amount of features were extracted and relevant parameters computed for such an investigation and a vast number of datasets developed. The datasets consist of features and computed parameters extracted from human gait and face images from various subjects of different ages. Soft-computing techniques, discrete wavelet transform (DWT), principal component analysis and the forward–backward dynamic programming method were applied for the best-fit selection of parameters and the complete matching process. The paretic and non-paretic characteristics were classified through Naïve Bayes’ classification theorem. Both classification and recognition were carried out in parallel with test and trained datasets and the whole process of investigation was successfully carried out through an algorithm developed in this chapter. The success rate of biometrical authentication is 89%

    Biometric walk recognizer. Research and results on wearable sensor-based gait recognition

    Get PDF
    Gait is a biometric trait that can allow user authentication, though being classified as a "soft" one due to a certain lack in permanence, and to sensibility to specific conditions. The earliest research relies on computer vision-based approaches, especially applied in video surveillance. More recently, the spread of wearable sensors, especially those embedded in mobile devices, which are able to capture the dynamics of the walking pattern through simpler 1D signals, has spurred a different research line. This capture modality can avoid some problems related to computer vision-based techniques, but suffers from specific limitations. Related research is still in a less advanced phase with respect to other biometric traits. However, the promising results achieved so far, the increasing accuracy of sensors, the ubiquitous presence of mobile devices, and the low cost of related techniques, make this biometrics attractive and suggest to continue the investigations in this field. The first Chapters of this thesis deal with an introduction to biometrics, and more specifically to gait trait. A comprehensive review of technologies, approaches and strategies exploited by gait recognition proposals in the state-of-the-art is also provided. After such introduction, the contributions of this work are presented in details. Summarizing, it improves preceding result achieved during my Master Degree in Computer Science course of Biometrics and extended in my following Master Degree Thesis. The research deals with different strategies, including preprocessing and recognition techniques, applied to the gait biometrics, in order to allow both an automatic recognition and an improvement of the system accuracy

    Mining Heterogeneous Multivariate Time-Series for Learning Meaningful Patterns: Application to Home Health Telecare

    Full text link
    For the last years, time-series mining has become a challenging issue for researchers. An important application lies in most monitoring purposes, which require analyzing large sets of time-series for learning usual patterns. Any deviation from this learned profile is then considered as an unexpected situation. Moreover, complex applications may involve the temporal study of several heterogeneous parameters. In that paper, we propose a method for mining heterogeneous multivariate time-series for learning meaningful patterns. The proposed approach allows for mixed time-series -- containing both pattern and non-pattern data -- such as for imprecise matches, outliers, stretching and global translating of patterns instances in time. We present the early results of our approach in the context of monitoring the health status of a person at home. The purpose is to build a behavioral profile of a person by analyzing the time variations of several quantitative or qualitative parameters recorded through a provision of sensors installed in the home
    • 

    corecore