388 research outputs found

    Hyperspectral Image Restoration via Total Variation Regularized Low-rank Tensor Decomposition

    Full text link
    Hyperspectral images (HSIs) are often corrupted by a mixture of several types of noise during the acquisition process, e.g., Gaussian noise, impulse noise, dead lines, stripes, and many others. Such complex noise could degrade the quality of the acquired HSIs, limiting the precision of the subsequent processing. In this paper, we present a novel tensor-based HSI restoration approach by fully identifying the intrinsic structures of the clean HSI part and the mixed noise part respectively. Specifically, for the clean HSI part, we use tensor Tucker decomposition to describe the global correlation among all bands, and an anisotropic spatial-spectral total variation (SSTV) regularization to characterize the piecewise smooth structure in both spatial and spectral domains. For the mixed noise part, we adopt the â„“1\ell_1 norm regularization to detect the sparse noise, including stripes, impulse noise, and dead pixels. Despite that TV regulariztion has the ability of removing Gaussian noise, the Frobenius norm term is further used to model heavy Gaussian noise for some real-world scenarios. Then, we develop an efficient algorithm for solving the resulting optimization problem by using the augmented Lagrange multiplier (ALM) method. Finally, extensive experiments on simulated and real-world noise HSIs are carried out to demonstrate the superiority of the proposed method over the existing state-of-the-art ones.Comment: 15 pages, 20 figure

    Constrained low-tubal-rank tensor recovery for hyperspectral images mixed noise removal by bilateral random projections

    Full text link
    In this paper, we propose a novel low-tubal-rank tensor recovery model, which directly constrains the tubal rank prior for effectively removing the mixed Gaussian and sparse noise in hyperspectral images. The constraints of tubal-rank and sparsity can govern the solution of the denoised tensor in the recovery procedure. To solve the constrained low-tubal-rank model, we develop an iterative algorithm based on bilateral random projections to efficiently solve the proposed model. The advantage of random projections is that the approximation of the low-tubal-rank tensor can be obtained quite accurately in an inexpensive manner. Experimental examples for hyperspectral image denoising are presented to demonstrate the effectiveness and efficiency of the proposed method.Comment: Accepted by IGARSS 201

    A Non-Local Structure Tensor Based Approach for Multicomponent Image Recovery Problems

    Full text link
    Non-Local Total Variation (NLTV) has emerged as a useful tool in variational methods for image recovery problems. In this paper, we extend the NLTV-based regularization to multicomponent images by taking advantage of the Structure Tensor (ST) resulting from the gradient of a multicomponent image. The proposed approach allows us to penalize the non-local variations, jointly for the different components, through various ℓ1,p\ell_{1,p} matrix norms with p≥1p \ge 1. To facilitate the choice of the hyper-parameters, we adopt a constrained convex optimization approach in which we minimize the data fidelity term subject to a constraint involving the ST-NLTV regularization. The resulting convex optimization problem is solved with a novel epigraphical projection method. This formulation can be efficiently implemented thanks to the flexibility offered by recent primal-dual proximal algorithms. Experiments are carried out for multispectral and hyperspectral images. The results demonstrate the interest of introducing a non-local structure tensor regularization and show that the proposed approach leads to significant improvements in terms of convergence speed over current state-of-the-art methods
    • …
    corecore