507 research outputs found

    The Matrix Ansatz, Orthogonal Polynomials, and Permutations

    Get PDF
    In this paper we outline a Matrix Ansatz approach to some problems of combinatorial enumeration. The idea is that many interesting quantities can be expressed in terms of products of matrices, where the matrices obey certain relations. We illustrate this approach with applications to moments of orthogonal polynomials, permutations, signed permutations, and tableaux.Comment: to appear in Advances in Applied Mathematics, special issue for Dennis Stanto

    Combinatorics of the three-parameter PASEP partition function

    Full text link
    We consider a partially asymmetric exclusion process (PASEP) on a finite number of sites with open and directed boundary conditions. Its partition function was calculated by Blythe, Evans, Colaiori, and Essler. It is known to be a generating function of permutation tableaux by the combinatorial interpretation of Corteel and Williams. We prove bijectively two new combinatorial interpretations. The first one is in terms of weighted Motzkin paths called Laguerre histories and is obtained by refining a bijection of Foata and Zeilberger. Secondly we show that this partition function is the generating function of permutations with respect to right-to-left minima, right-to-left maxima, ascents, and 31-2 patterns, by refining a bijection of Francon and Viennot. Then we give a new formula for the partition function which generalizes the one of Blythe & al. It is proved in two combinatorial ways. The first proof is an enumeration of lattice paths which are known to be a solution of the Matrix Ansatz of Derrida & al. The second proof relies on a previous enumeration of rook placements, which appear in the combinatorial interpretation of a related normal ordering problem. We also obtain a closed formula for the moments of Al-Salam-Chihara polynomials.Comment: 31 page

    Symmetric unimodal expansions of excedances in colored permutations

    Full text link
    We consider several generalizations of the classical Îł\gamma-positivity of Eulerian polynomials (and their derangement analogues) using generating functions and combinatorial theory of continued fractions. For the symmetric group, we prove an expansion formula for inversions and excedances as well as a similar expansion for derangements. We also prove the Îł\gamma-positivity for Eulerian polynomials for derangements of type BB. More general expansion formulae are also given for Eulerian polynomials for rr-colored derangements. Our results answer and generalize several recent open problems in the literature.Comment: 27 pages, 10 figure

    Growth models, random matrices and Painleve transcendents

    Full text link
    The Hammersley process relates to the statistical properties of the maximum length of all up/right paths connecting random points of a given density in the unit square from (0,0) to (1,1). This process can also be interpreted in terms of the height of the polynuclear growth model, or the length of the longest increasing subsequence in a random permutation. The cumulative distribution of the longest path length can be written in terms of an average over the unitary group. Versions of the Hammersley process in which the points are constrained to have certain symmetries of the square allow similar formulas. The derivation of these formulas is reviewed. Generalizing the original model to have point sources along two boundaries of the square, and appropriately scaling the parameters gives a model in the KPZ universality class. Following works of Baik and Rains, and Pr\"ahofer and Spohn, we review the calculation of the scaled cumulative distribution, in which a particular Painlev\'e II transcendent plays a prominent role.Comment: 27 pages, 5 figure

    Tableaux combinatorics for the asymmetric exclusion process and Askey-Wilson polynomials

    Full text link
    Introduced in the late 1960's, the asymmetric exclusion process (ASEP) is an important model from statistical mechanics which describes a system of interacting particles hopping left and right on a one-dimensional lattice of n sites with open boundaries. It has been cited as a model for traffic flow and protein synthesis. In the most general form of the ASEP with open boundaries, particles may enter and exit at the left with probabilities alpha and gamma, and they may exit and enter at the right with probabilities beta and delta. In the bulk, the probability of hopping left is q times the probability of hopping right. The first main result of this paper is a combinatorial formula for the stationary distribution of the ASEP with all parameters general, in terms of a new class of tableaux which we call staircase tableaux. This generalizes our previous work for the ASEP with parameters gamma=delta=0. Using our first result and also results of Uchiyama-Sasamoto-Wadati, we derive our second main result: a combinatorial formula for the moments of Askey-Wilson polynomials. Since the early 1980's there has been a great deal of work giving combinatorial formulas for moments of various other classical orthogonal polynomials (e.g. Hermite, Charlier, Laguerre, Meixner). However, this is the first such formula for the Askey-Wilson polynomials, which are at the top of the hierarchy of classical orthogonal polynomials.Comment: An announcement of these results appeared here: http://www.pnas.org/content/early/2010/03/25/0909915107.abstract This version of the paper has updated references and corrects a gap in the proof of Proposition 6.11 which was in the published versio

    Separation of variables and combinatorics of linearization coefficients of orthogonal polynomials

    Full text link
    We propose a new approach to the combinatorial interpretations of linearization coefficient problem of orthogonal polynomials. We first establish a difference system and then solve it combinatorially and analytically using the method of separation of variables. We illustrate our approach by applying it to determine the number of perfect matchings, derangements, and other weighted permutation problems. The separation of variables technique naturally leads to integral representations of combinatorial numbers where the integrand contains a product of one or more types of orthogonal polynomials. This also establishes the positivity of such integrals.Comment: Journal of Combinatorial Theory, Series A 120 (2013) 561--59

    Counting derangements and Nash equilibria

    Full text link
    The maximal number of totally mixed Nash equilibria in games of several players equals the number of block derangements, as proved by McKelvey and McLennan.On the other hand, counting the derangements is a well studied problem. The numbers are identified as linearization coefficients for Laguerre polynomials. MacMahon derived a generating function for them as an application of his master theorem. This article relates the algebraic, combinatorial and game-theoretic problems that were not connected before. New recurrence relations, hypergeometric formulas and asymptotics for the derangement counts are derived. An upper bound for the total number of all Nash equilibria is given.Comment: 22 pages, 1 table; Theorem 3.3 adde
    • …
    corecore