3,072 research outputs found

    Compact-Reconstruction Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws

    Get PDF
    A new class of non-linear compact interpolation schemes is introduced in this dissertation that have a high spectral resolution and are non-oscillatory across discontinuities. The Compact-Reconstruction Weighted Essentially Non-Oscillatory (CRWENO) schemes use a solution-dependent combination of lower-order compact schemes to yield a high-order accurate, non-oscillatory scheme. Fifth-order accurate CRWENO schemes are constructed and their numerical properties are analyzed. These schemes have lower absolute errors and higher spectral resolution than the WENO scheme of the same order. The schemes are applied to scalar conservation laws and the Euler equations of fluid dynamics. The order of convergence and the higher accuracy of the CRWENO schemes are verified for smooth solutions. Significant improvements are observed in the resolution of discontinuities and extrema as well as the preservation of flow features over large convection distances. The computational cost of the CRWENO schemes is assessed and the reduced error in the solution outweighs the additional expense of the implicit scheme, thus resulting in higher numerical efficiency. This conclusion extends to the reconstruction of conserved and primitive variables for the Euler equations, but not to the characteristic-based reconstruction. Further improvements are observed in the accuracy and resolution of the schemes with alternative formulations for the non-linear weights. The CRWENO schemes are integrated into a structured, finite-volume Navier-Stokes solver and applied to problems of practical relevance. Steady and unsteady flows around airfoils are solved to validate the scheme for curvi-linear grids, as well as overset grids with relative motion. The steady flow around a three-dimensional wing and the unsteady flow around a full-scale rotor are solved. It is observed that though lower-order schemes suffice for the accurate prediction of aerodynamic forces, the CRWENO scheme yields improved resolution of near-blade and wake flow features, including boundary and shear layers, and shed vortices. The high spectral resolution, coupled with the non-oscillatory behavior, indicate their suitability for the direct numerical simulation of compressible turbulent flows. Canonical flow problems -- the decay of isotropic turbulence and the shock-turbulence interaction -- are solved. The CRWENO schemes show an improved resolution of the higher wavenumbers and the small-length-scale flow features that are characteristic of turbulent flows. Overall, the CRWENO schemes show significant improvements in resolving and preserving flow features over a large range of length scales due to the higher spectral resolution and lower dissipation and dispersion errors, compared to the WENO schemes. Thus, these schemes are a viable alternative for the numerical simulation of compressible, turbulent flows

    Hybrid Spectral Difference/Embedded Finite Volume Method for Conservation Laws

    Full text link
    A novel hybrid spectral difference/embedded finite volume method is introduced in order to apply a discontinuous high-order method for large scale engineering applications involving discontinuities in the flows with complex geometries. In the proposed hybrid approach, the finite volume (FV) element, consisting of structured FV subcells, is embedded in the base hexahedral element containing discontinuity, and an FV based high-order shock-capturing scheme is employed to overcome the Gibbs phenomena. Thus, a discontinuity is captured at the resolution of FV subcells within an embedded FV element. In the smooth flow region, the SD element is used in the base hexahedral element. Then, the governing equations are solved by the SD method. The SD method is chosen for its low numerical dissipation and computational efficiency preserving high-order accurate solutions. The coupling between the SD element and the FV element is achieved by the globally conserved mortar method. In this paper, the 5th-order WENO scheme with the characteristic decomposition is employed as the shock-capturing scheme in the embedded FV element, and the 5th-order SD method is used in the smooth flow field. The order of accuracy study and various 1D and 2D test cases are carried out, which involve the discontinuities and vortex flows. Overall, it is shown that the proposed hybrid method results in comparable or better simulation results compared with the standalone WENO scheme when the same number of solution DOF is considered in both SD and FV elements.Comment: 27 pages, 17 figures, 2 tables, Accepted for publication in the Journal of Computational Physics, April 201

    DNS of the interaction between a shock wave and a turbulent shear flow: some effects of anisotropy

    Get PDF
    Direct numerical simulation is used to study the interaction of a Mach 1.5 shock wave and various types of anisotropic turbulent flows. We compare the interaction of isotropic, axisymmetric and sheared turbulences (sometimes combined), with a specific interest for the sheared situation. The sign and magnitude of the correlation between the velocity and temperature fluctuations are found to have a crucial influence on the kinetic energy amplification across the shock. A decrease in magnitude is observed during the interaction for the velocity cross-correlation. The balance equation of this quantity is investigated and the terms responsible for this behaviour are identified. The shear stress effect upon fluctuating vorticity and the dissipation length scale is also presented. Thermodynamic fluctuations are finally analyzed, showing the departure from the isentropic state in the sheared situation compared to the isotropic one
    corecore