307 research outputs found

    New Approaches in Multi-View Clustering

    Get PDF
    Many real-world datasets can be naturally described by multiple views. Due to this, multi-view learning has drawn much attention from both academia and industry. Compared to single-view learning, multi-view learning has demonstrated plenty of advantages. Clustering has long been serving as a critical technique in data mining and machine learning. Recently, multi-view clustering has achieved great success in various applications. To provide a comprehensive review of the typical multi-view clustering methods and their corresponding recent developments, this chapter summarizes five kinds of popular clustering methods and their multi-view learning versions, which include k-means, spectral clustering, matrix factorization, tensor decomposition, and deep learning. These clustering methods are the most widely employed algorithms for single-view data, and lots of efforts have been devoted to extending them for multi-view clustering. Besides, many other multi-view clustering methods can be unified into the frameworks of these five methods. To promote further research and development of multi-view clustering, some popular and open datasets are summarized in two categories. Furthermore, several open issues that deserve more exploration are pointed out in the end

    An Analytical Performance Evaluation on Multiview Clustering Approaches

    Get PDF
    The concept of machine learning encompasses a wide variety of different approaches, one of which is called clustering. The data points are grouped together in this approach to the problem. Using a clustering method, it is feasible, given a collection of data points, to classify each data point as belonging to a specific group. This can be done if the algorithm is given the collection of data points. In theory, data points that constitute the same group ought to have attributes and characteristics that are equivalent to one another, however data points that belong to other groups ought to have properties and characteristics that are very different from one another. The generation of multiview data is made possible by recent developments in information collecting technologies. The data were collected from à variety of sources and were analysed using a variety of perspectives. The data in question are what are known as multiview data. On a single view, the conventional clustering algorithms are applied. In spite of this, real-world data are complicated and can be clustered in a variety of different ways, depending on how the data are interpreted. In practise, the real-world data are messy. In recent years, Multiview Clustering, often known as MVC, has garnered an increasing amount of attention due to its goal of utilising complimentary and consensus information derived from different points of view. On the other hand, the vast majority of the systems that are currently available only enable the single-clustering scenario, whereby only makes utilization of a single cluster to split the data. This is the case since there is only one cluster accessible. In light of this, it is absolutely necessary to carry out investigation on the multiview data format. The study work is centred on multiview clustering and how well it performs compared to these other strategies

    Statistical learning for predictive targeting in online advertising

    Get PDF

    EXPLOITING USER COMMENTS FOR WEB APPLICATIONS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Localized Sparse Incomplete Multi-view Clustering

    Full text link
    Incomplete multi-view clustering, which aims to solve the clustering problem on the incomplete multi-view data with partial view missing, has received more and more attention in recent years. Although numerous methods have been developed, most of the methods either cannot flexibly handle the incomplete multi-view data with arbitrary missing views or do not consider the negative factor of information imbalance among views. Moreover, some methods do not fully explore the local structure of all incomplete views. To tackle these problems, this paper proposes a simple but effective method, named localized sparse incomplete multi-view clustering (LSIMVC). Different from the existing methods, LSIMVC intends to learn a sparse and structured consensus latent representation from the incomplete multi-view data by optimizing a sparse regularized and novel graph embedded multi-view matrix factorization model. Specifically, in such a novel model based on the matrix factorization, a l1 norm based sparse constraint is introduced to obtain the sparse low-dimensional individual representations and the sparse consensus representation. Moreover, a novel local graph embedding term is introduced to learn the structured consensus representation. Different from the existing works, our local graph embedding term aggregates the graph embedding task and consensus representation learning task into a concise term. Furthermore, to reduce the imbalance factor of incomplete multi-view learning, an adaptive weighted learning scheme is introduced to LSIMVC. Finally, an efficient optimization strategy is given to solve the optimization problem of our proposed model. Comprehensive experimental results performed on six incomplete multi-view databases verify that the performance of our LSIMVC is superior to the state-of-the-art IMC approaches. The code is available in https://github.com/justsmart/LSIMVC.Comment: Published in IEEE Transactions on Multimedia (TMM). The code is available at Github https://github.com/justsmart/LSIMV

    Scalable and interpretable product recommendations via overlapping co-clustering

    Full text link
    We consider the problem of generating interpretable recommendations by identifying overlapping co-clusters of clients and products, based only on positive or implicit feedback. Our approach is applicable on very large datasets because it exhibits almost linear complexity in the input examples and the number of co-clusters. We show, both on real industrial data and on publicly available datasets, that the recommendation accuracy of our algorithm is competitive to that of state-of-art matrix factorization techniques. In addition, our technique has the advantage of offering recommendations that are textually and visually interpretable. Finally, we examine how to implement our technique efficiently on Graphical Processing Units (GPUs).Comment: In IEEE International Conference on Data Engineering (ICDE) 201

    A Collaborative Filtering Probabilistic Approach for Recommendation to Large Homogeneous and Automatically Detected Groups

    Get PDF
    In the collaborative filtering recommender systems (CFRS) field, recommendation to group of users is mainly focused on stablished, occasional or random groups. These groups have a little number of users: relatives, friends, colleagues, etc. Our proposal deals with large numbers of automatically detected groups. Marketing and electronic commerce are typical targets of large homogenous groups. Large groups present a major difficulty in terms of automatically achieving homogeneity, equilibrated size and accurate recommendations. We provide a method that combines diverse machine learning algorithms in an original way: homogeneous groups are detected by means of a clustering based on hidden factors instead of ratings. Predictions are made using a virtual user model, and virtual users are obtained by performing a hidden factors aggregation. Additionally, this paper selects the most appropriate dimensionality reduction for the explained RS aim. We conduct a set of experiments to catch the maximum cumulative deviation of the ratings information. Results show an improvement on recommendations made to large homogeneous groups. It is also shown the desirability of designing specific methods and algorithms to deal with automatically detected groups
    corecore