11,814 research outputs found

    Maximum Entropy Vector Kernels for MIMO system identification

    Full text link
    Recent contributions have framed linear system identification as a nonparametric regularized inverse problem. Relying on â„“2\ell_2-type regularization which accounts for the stability and smoothness of the impulse response to be estimated, these approaches have been shown to be competitive w.r.t classical parametric methods. In this paper, adopting Maximum Entropy arguments, we derive a new â„“2\ell_2 penalty deriving from a vector-valued kernel; to do so we exploit the structure of the Hankel matrix, thus controlling at the same time complexity, measured by the McMillan degree, stability and smoothness of the identified models. As a special case we recover the nuclear norm penalty on the squared block Hankel matrix. In contrast with previous literature on reweighted nuclear norm penalties, our kernel is described by a small number of hyper-parameters, which are iteratively updated through marginal likelihood maximization; constraining the structure of the kernel acts as a (hyper)regularizer which helps controlling the effective degrees of freedom of our estimator. To optimize the marginal likelihood we adapt a Scaled Gradient Projection (SGP) algorithm which is proved to be significantly computationally cheaper than other first and second order off-the-shelf optimization methods. The paper also contains an extensive comparison with many state-of-the-art methods on several Monte-Carlo studies, which confirms the effectiveness of our procedure

    Polynomial approach to nonlinear predictive generalized minimum variance control

    Get PDF
    A relatively simple approach to non-linear predictive generalised minimum variance (NPGMV) control is introduced for non-linear discrete-time multivariable systems. The system is represented by a combination of a stable non-linear subsystem where no structure is assumed and a linear subsystem that may be unstable and modelled in polynomial matrix form. The multi-step predictive control cost index to be minimised involves both weighted error and control signal costing terms. The NPGMV control law involves an assumption on the choice of cost-function weights to ensure the existence of a stable non-linear closed-loop operator. A valuable feature of the control law is that in the asymptotic case, where the plant is linear, the controller reduces to a polynomial matrix version of the well known generalised predictive control (GPC) controller. In the limiting case when the plant is non-linear and the cost-function is single step the controller becomes equal to the polynomial matrix version of the so-called non-linear generalised minimum variance controller. The controller can be implemented in a form related to a non-linear version of the Smith predictor but unlike this compensator a stabilising control law can be obtained for open-loop unstable processes

    Harnessing machine learning for fiber-induced nonlinearity mitigation in long-haul coherent optical OFDM

    Get PDF
    © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Coherent optical orthogonal frequency division multiplexing (CO-OFDM) has attracted a lot of interest in optical fiber communications due to its simplified digital signal processing (DSP) units, high spectral-efficiency, flexibility, and tolerance to linear impairments. However, CO-OFDM’s high peak-to-average power ratio imposes high vulnerability to fiber-induced non-linearities. DSP-based machine learning has been considered as a promising approach for fiber non-linearity compensation without sacrificing computational complexity. In this paper, we review the existing machine learning approaches for CO-OFDM in a common framework and review the progress in this area with a focus on practical aspects and comparison with benchmark DSP solutions.Peer reviewe

    Nonlinear innovation identification for ship maneuvering modeling via the full-scale trial data

    Get PDF
    • …
    corecore