48,302 research outputs found

    Weighted Model Counting With Function Symbols

    Get PDF

    Controlled non uniform random generation of decomposable structures

    Get PDF
    Consider a class of decomposable combinatorial structures, using different types of atoms \Atoms = \{\At_1,\ldots ,\At_{|{\Atoms}|}\}. We address the random generation of such structures with respect to a size nn and a targeted distribution in kk of its \emph{distinguished} atoms. We consider two variations on this problem. In the first alternative, the targeted distribution is given by kk real numbers \TargFreq_1, \ldots, \TargFreq_k such that 0 < \TargFreq_i < 1 for all ii and \TargFreq_1+\cdots+\TargFreq_k \leq 1. We aim to generate random structures among the whole set of structures of a given size nn, in such a way that the {\em expected} frequency of any distinguished atom \At_i equals \TargFreq_i. We address this problem by weighting the atoms with a kk-tuple \Weights of real-valued weights, inducing a weighted distribution over the set of structures of size nn. We first adapt the classical recursive random generation scheme into an algorithm taking \bigO{n^{1+o(1)}+mn\log{n}} arithmetic operations to draw mm structures from the \Weights-weighted distribution. Secondly, we address the analytical computation of weights such that the targeted frequencies are achieved asymptotically, i. e. for large values of nn. We derive systems of functional equations whose resolution gives an explicit relationship between \Weights and \TargFreq_1, \ldots, \TargFreq_k. Lastly, we give an algorithm in \bigO{k n^4} for the inverse problem, {\it i.e.} computing the frequencies associated with a given kk-tuple \Weights of weights, and an optimized version in \bigO{k n^2} in the case of context-free languages. This allows for a heuristic resolution of the weights/frequencies relationship suitable for complex specifications. In the second alternative, the targeted distribution is given by a kk natural numbers n1,…,nkn_1, \ldots, n_k such that n1+⋯+nk+r=nn_1+\cdots+n_k+r=n where r≥0r \geq 0 is the number of undistinguished atoms. The structures must be generated uniformly among the set of structures of size nn that contain {\em exactly} nin_i atoms \At_i (1≤i≤k1 \leq i \leq k). We give a \bigO{r^2\prod_{i=1}^k n_i^2 +m n k \log n} algorithm for generating mm structures, which simplifies into a \bigO{r\prod_{i=1}^k n_i +m n} for regular specifications

    Understanding the Complexity of Lifted Inference and Asymmetric Weighted Model Counting

    Full text link
    In this paper we study lifted inference for the Weighted First-Order Model Counting problem (WFOMC), which counts the assignments that satisfy a given sentence in first-order logic (FOL); it has applications in Statistical Relational Learning (SRL) and Probabilistic Databases (PDB). We present several results. First, we describe a lifted inference algorithm that generalizes prior approaches in SRL and PDB. Second, we provide a novel dichotomy result for a non-trivial fragment of FO CNF sentences, showing that for each sentence the WFOMC problem is either in PTIME or #P-hard in the size of the input domain; we prove that, in the first case our algorithm solves the WFOMC problem in PTIME, and in the second case it fails. Third, we present several properties of the algorithm. Finally, we discuss limitations of lifted inference for symmetric probabilistic databases (where the weights of ground literals depend only on the relation name, and not on the constants of the domain), and prove the impossibility of a dichotomy result for the complexity of probabilistic inference for the entire language FOL

    Lower Complexity Bounds for Lifted Inference

    Full text link
    One of the big challenges in the development of probabilistic relational (or probabilistic logical) modeling and learning frameworks is the design of inference techniques that operate on the level of the abstract model representation language, rather than on the level of ground, propositional instances of the model. Numerous approaches for such "lifted inference" techniques have been proposed. While it has been demonstrated that these techniques will lead to significantly more efficient inference on some specific models, there are only very recent and still quite restricted results that show the feasibility of lifted inference on certain syntactically defined classes of models. Lower complexity bounds that imply some limitations for the feasibility of lifted inference on more expressive model classes were established early on in (Jaeger 2000). However, it is not immediate that these results also apply to the type of modeling languages that currently receive the most attention, i.e., weighted, quantifier-free formulas. In this paper we extend these earlier results, and show that under the assumption that NETIME =/= ETIME, there is no polynomial lifted inference algorithm for knowledge bases of weighted, quantifier- and function-free formulas. Further strengthening earlier results, this is also shown to hold for approximate inference, and for knowledge bases not containing the equality predicate.Comment: To appear in Theory and Practice of Logic Programming (TPLP

    Knowledge Compilation of Logic Programs Using Approximation Fixpoint Theory

    Full text link
    To appear in Theory and Practice of Logic Programming (TPLP), Proceedings of ICLP 2015 Recent advances in knowledge compilation introduced techniques to compile \emph{positive} logic programs into propositional logic, essentially exploiting the constructive nature of the least fixpoint computation. This approach has several advantages over existing approaches: it maintains logical equivalence, does not require (expensive) loop-breaking preprocessing or the introduction of auxiliary variables, and significantly outperforms existing algorithms. Unfortunately, this technique is limited to \emph{negation-free} programs. In this paper, we show how to extend it to general logic programs under the well-founded semantics. We develop our work in approximation fixpoint theory, an algebraical framework that unifies semantics of different logics. As such, our algebraical results are also applicable to autoepistemic logic, default logic and abstract dialectical frameworks
    • …
    corecore