3,198 research outputs found

    Alternating Least-Squares for Low-Rank Matrix Reconstruction

    Full text link
    For reconstruction of low-rank matrices from undersampled measurements, we develop an iterative algorithm based on least-squares estimation. While the algorithm can be used for any low-rank matrix, it is also capable of exploiting a-priori knowledge of matrix structure. In particular, we consider linearly structured matrices, such as Hankel and Toeplitz, as well as positive semidefinite matrices. The performance of the algorithm, referred to as alternating least-squares (ALS), is evaluated by simulations and compared to the Cram\'er-Rao bounds.Comment: 4 pages, 2 figure

    Off-The-Grid Spectral Compressed Sensing With Prior Information

    Full text link
    Recent research in off-the-grid compressed sensing (CS) has demonstrated that, under certain conditions, one can successfully recover a spectrally sparse signal from a few time-domain samples even though the dictionary is continuous. In this paper, we extend off-the-grid CS to applications where some prior information about spectrally sparse signal is known. We specifically consider cases where a few contributing frequencies or poles, but not their amplitudes or phases, are known a priori. Our results show that equipping off-the-grid CS with the known-poles algorithm can increase the probability of recovering all the frequency components.Comment: 5 pages, 4 figure

    On the Power of Adaptivity in Matrix Completion and Approximation

    Full text link
    We consider the related tasks of matrix completion and matrix approximation from missing data and propose adaptive sampling procedures for both problems. We show that adaptive sampling allows one to eliminate standard incoherence assumptions on the matrix row space that are necessary for passive sampling procedures. For exact recovery of a low-rank matrix, our algorithm judiciously selects a few columns to observe in full and, with few additional measurements, projects the remaining columns onto their span. This algorithm exactly recovers an n×nn \times n rank rr matrix using O(nrμ0log2(r))O(nr\mu_0 \log^2(r)) observations, where μ0\mu_0 is a coherence parameter on the column space of the matrix. In addition to completely eliminating any row space assumptions that have pervaded the literature, this algorithm enjoys a better sample complexity than any existing matrix completion algorithm. To certify that this improvement is due to adaptive sampling, we establish that row space coherence is necessary for passive sampling algorithms to achieve non-trivial sample complexity bounds. For constructing a low-rank approximation to a high-rank input matrix, we propose a simple algorithm that thresholds the singular values of a zero-filled version of the input matrix. The algorithm computes an approximation that is nearly as good as the best rank-rr approximation using O(nrμlog2(n))O(nr\mu \log^2(n)) samples, where μ\mu is a slightly different coherence parameter on the matrix columns. Again we eliminate assumptions on the row space
    corecore