348 research outputs found

    Weighted first-order logics over semirings

    Get PDF
    We consider a first-order logic, a linear temporal logic, star-free expressions and counter-free Büchi automata, with weights, over idempotent, zerodivisor free and totally commutative complete semirings. We show the expressive equivalence (of fragments) of these concepts, generalizing in the quantitative setup, the corresponding folklore result of formal language theory

    Weighted First-Order Logics over Semirings

    Full text link

    Weighted Automata and Logics for Infinite Nested Words

    Full text link
    Nested words introduced by Alur and Madhusudan are used to capture structures with both linear and hierarchical order, e.g. XML documents, without losing valuable closure properties. Furthermore, Alur and Madhusudan introduced automata and equivalent logics for both finite and infinite nested words, thus extending B\"uchi's theorem to nested words. Recently, average and discounted computations of weights in quantitative systems found much interest. Here, we will introduce and investigate weighted automata models and weighted MSO logics for infinite nested words. As weight structures we consider valuation monoids which incorporate average and discounted computations of weights as well as the classical semirings. We show that under suitable assumptions, two resp. three fragments of our weighted logics can be transformed into each other. Moreover, we show that the logic fragments have the same expressive power as weighted nested word automata.Comment: LATA 2014, 12 page

    Architectures in parametric component-based systems: Qualitative and quantitative modelling

    Full text link
    One of the key aspects in component-based design is specifying the software architecture that characterizes the topology and the permissible interactions of the components of a system. To achieve well-founded design there is need to address both the qualitative and non-functional aspects of architectures. In this paper we study the qualitative and quantitative formal modelling of architectures applied on parametric component-based systems, that consist of an unknown number of instances of each component. Specifically, we introduce an extended propositional interaction logic and investigate its first-order level which serves as a formal language for the interactions of parametric systems. Our logics achieve to encode the execution order of interactions, which is a main feature in several important architectures, as well as to model recursive interactions. Moreover, we prove the decidability of equivalence, satisfiability, and validity of first-order extended interaction logic formulas, and provide several examples of formulas describing well-known architectures. We show the robustness of our theory by effectively extending our results for parametric weighted architectures. For this, we study the weighted counterparts of our logics over a commutative semiring, and we apply them for modelling the quantitative aspects of concrete architectures. Finally, we prove that the equivalence problem of weighted first-order extended interaction logic formulas is decidable in a large class of semirings, namely the class (of subsemirings) of skew fields.Comment: 53 pages, 11 figure

    Weighted Logics for Nested Words and Algebraic Formal Power Series

    Full text link
    Nested words, a model for recursive programs proposed by Alur and Madhusudan, have recently gained much interest. In this paper we introduce quantitative extensions and study nested word series which assign to nested words elements of a semiring. We show that regular nested word series coincide with series definable in weighted logics as introduced by Droste and Gastin. For this we establish a connection between nested words and the free bisemigroup. Applying our result, we obtain characterizations of algebraic formal power series in terms of weighted logics. This generalizes results of Lautemann, Schwentick and Therien on context-free languages

    Weighted Automata and Monadic Second Order Logic

    Full text link
    Let S be a commutative semiring. M. Droste and P. Gastin have introduced in 2005 weighted monadic second order logic WMSOL with weights in S. They use a syntactic fragment RMSOL of WMSOL to characterize word functions (power series) recognizable by weighted automata, where the semantics of quantifiers is used both as arithmetical operations and, in the boolean case, as quantification. Already in 2001, B. Courcelle, J.Makowsky and U. Rotics have introduced a formalism for graph parameters definable in Monadic Second order Logic, here called MSOLEVAL with values in a ring R. Their framework can be easily adapted to semirings S. This formalism clearly separates the logical part from the arithmetical part and also applies to word functions. In this paper we give two proofs that RMSOL and MSOLEVAL with values in S have the same expressive power over words. One proof shows directly that MSOLEVAL captures the functions recognizable by weighted automata. The other proof shows how to translate the formalisms from one into the other.Comment: In Proceedings GandALF 2013, arXiv:1307.416
    corecore