8,639 research outputs found

    Visual units and confusion modelling for automatic lip-reading

    Get PDF
    Automatic lip-reading (ALR) is a challenging task because the visual speech signal is known to be missing some important information, such as voicing. We propose an approach to ALR that acknowledges that this information is missing but assumes that it is substituted or deleted in a systematic way that can be modelled. We describe a system that learns such a model and then incorporates it into decoding, which is realised as a cascade of weighted finite-state transducers. Our results show a small but statistically significant improvement in recognition accuracy. We also investigate the issue of suitable visual units for ALR, and show that visemes are sub-optimal, not but because they introduce lexical ambiguity, but because the reduction in modelling units entailed by their use reduces accuracy

    On the Disambiguation of Weighted Automata

    Full text link
    We present a disambiguation algorithm for weighted automata. The algorithm admits two main stages: a pre-disambiguation stage followed by a transition removal stage. We give a detailed description of the algorithm and the proof of its correctness. The algorithm is not applicable to all weighted automata but we prove sufficient conditions for its applicability in the case of the tropical semiring by introducing the *weak twins property*. In particular, the algorithm can be used with all acyclic weighted automata, relevant to applications. While disambiguation can sometimes be achieved using determinization, our disambiguation algorithm in some cases can return a result that is exponentially smaller than any equivalent deterministic automaton. We also present some empirical evidence of the space benefits of disambiguation over determinization in speech recognition and machine translation applications

    Regular Combinators for String Transformations

    Full text link
    We focus on (partial) functions that map input strings to a monoid such as the set of integers with addition and the set of output strings with concatenation. The notion of regularity for such functions has been defined using two-way finite-state transducers, (one-way) cost register automata, and MSO-definable graph transformations. In this paper, we give an algebraic and machine-independent characterization of this class analogous to the definition of regular languages by regular expressions. When the monoid is commutative, we prove that every regular function can be constructed from constant functions using the combinators of choice, split sum, and iterated sum, that are analogs of union, concatenation, and Kleene-*, respectively, but enforce unique (or unambiguous) parsing. Our main result is for the general case of non-commutative monoids, which is of particular interest for capturing regular string-to-string transformations for document processing. We prove that the following additional combinators suffice for constructing all regular functions: (1) the left-additive versions of split sum and iterated sum, which allow transformations such as string reversal; (2) sum of functions, which allows transformations such as copying of strings; and (3) function composition, or alternatively, a new concept of chained sum, which allows output values from adjacent blocks to mix.Comment: This is the full version, with omitted proofs and constructions, of the conference paper currently in submissio

    Damage localization map using electromechanical impedance spectrums and inverse distance weighting interpolation: Experimental validation on thin composite structures

    Get PDF
    Piezoelectric sensors are widely used for structure health monitoring technique. In particular, electromechanical impedance techniques give simple and low-cost solutions for detecting damage in composite structures. The purpose of the method proposed in this article is to generate a damage localization map based on both indicators computed from electromechanical impedance spectrums and inverse distance weighting interpolation. The weights for the interpolation have a physical sense and are computed according to an exponential law of the measured attenuation of acoustic waves. One of the main advantages of the method, so-called data-driven method, is that only experimental data are used as inputs for our algorithm. It does not rely on any model. The proposed method has been validated on both one-dimensional and two-dimensional composite structures
    • …
    corecore