2,443 research outputs found

    Admissible orders on quotients of the free associative algebra

    Get PDF
    An admissible order on a multiplicative basis of a noncommutative algebra A is a term order satisfying additional conditions that allow for the construction of Grobner bases for A -modules. When A is commutative, a finite reduced Grobner basis for an A -module can always be obtained, but when A is not commutative this is not the case; in fact in many cases a Grobner basis theory for A may not even exist. E. Hinson has used position-dependent weights, encoded in so-called admissible arrays, to partially order words in the free associative algebra in a way which produces a length-dominant admissible order on a particular quotient of the free algebra, where the ideal by which the quotient is taken is an ideal generated by pure homogeneous binomial differences and is determined by the array A. This dissertation investigates the properties of two large classes of admissible arrays A. We prove that weight ideals associated to arrays in the first class are finitely generated and we describe the generating sets. We exhibit instances of trivial and nontrivial finitely generated weight ideals associated to arrays in the second class and we partially characterize the corresponding arrays. We also exhibit instances of weight ideals associated to arrays in the second class which do not admit a finite generating set. We identify an algebro-combinatorial property on weight ideals, which we call saturation, that is connected to finite generation. In addition, we look at actions of the multiplicative monoid generated by the set of transvections and diagonal matrices with non-negative entries on the set of equivalence classes of admissible arrays under order-isomorphism and we analyze the stabilizers and orbits of these actions

    Adventures in Invariant Theory

    Full text link
    We provide an introduction to enumerating and constructing invariants of group representations via character methods. The problem is contextualised via two case studies arising from our recent work: entanglement measures, for characterising the structure of state spaces for composite quantum systems; and Markov invariants, a robust alternative to parameter-estimation intensive methods of statistical inference in molecular phylogenetics.Comment: 12 pp, includes supplementary discussion of example

    Complexity of linear circuits and geometry

    Full text link
    We use algebraic geometry to study matrix rigidity, and more generally, the complexity of computing a matrix-vector product, continuing a study initiated by Kumar, et. al. We (i) exhibit many non-obvious equations testing for (border) rigidity, (ii) compute degrees of varieties associated to rigidity, (iii) describe algebraic varieties associated to families of matrices that are expected to have super-linear rigidity, and (iv) prove results about the ideals and degrees of cones that are of interest in their own right.Comment: 29 pages, final version to appear in FOC

    The Dirichlet Markov Ensemble

    Get PDF
    We equip the polytope of n×nn\times n Markov matrices with the normalized trace of the Lebesgue measure of Rn2\mathbb{R}^{n^2}. This probability space provides random Markov matrices, with i.i.d. rows following the Dirichlet distribution of mean (1/n,...,1/n)(1/n,...,1/n). We show that if \bM is such a random matrix, then the empirical distribution built from the singular values of\sqrt{n} \bM tends as nn\to\infty to a Wigner quarter--circle distribution. Some computer simulations reveal striking asymptotic spectral properties of such random matrices, still waiting for a rigorous mathematical analysis. In particular, we believe that with probability one, the empirical distribution of the complex spectrum of \sqrt{n} \bM tends as nn\to\infty to the uniform distribution on the unit disc of the complex plane, and that moreover, the spectral gap of \bM is of order 11/n1-1/\sqrt{n} when nn is large.Comment: Improved version. Accepted for publication in JMV

    Geometric and Topological Combinatorics

    Get PDF
    The 2007 Oberwolfach meeting “Geometric and Topological Combinatorics” presented a great variety of investigations where topological and algebraic methods are brought into play to solve combinatorial and geometric problems, but also where geometric and combinatorial ideas are applied to topological questions
    corecore