7,076 research outputs found

    Weight hierarchies of a family of linear codes associated with degenerate quadratic forms

    Full text link
    We restrict a degenerate quadratic form ff over a finite field of odd characteristic to subspaces. Thus, a quotient space related to ff is introduced. Then we get a non-degenerate quadratic form induced by ff over the quotient space. Some related results on the subspaces and quotient space are obtained. Based on this, we solve the weight hierarchies of a family of linear codes related to f.f.Comment: 12 page

    The Weight Hierarchies of Linear Codes from Simplicial Complexes

    Full text link
    The study of the generalized Hamming weight of linear codes is a significant research topic in coding theory as it conveys the structural information of the codes and determines their performance in various applications. However, determining the generalized Hamming weights of linear codes, especially the weight hierarchy, is generally challenging. In this paper, we investigate the generalized Hamming weights of a class of linear code \C over \bF_q, which is constructed from defining sets. These defining sets are either special simplicial complexes or their complements in \bF_q^m. We determine the complete weight hierarchies of these codes by analyzing the maximum or minimum intersection of certain simplicial complexes and all rr-dimensional subspaces of \bF_q^m, where 1\leq r\leq {\rm dim}_{\bF_q}(\C)

    GRASS: Generative Recursive Autoencoders for Shape Structures

    Full text link
    We introduce a novel neural network architecture for encoding and synthesis of 3D shapes, particularly their structures. Our key insight is that 3D shapes are effectively characterized by their hierarchical organization of parts, which reflects fundamental intra-shape relationships such as adjacency and symmetry. We develop a recursive neural net (RvNN) based autoencoder to map a flat, unlabeled, arbitrary part layout to a compact code. The code effectively captures hierarchical structures of man-made 3D objects of varying structural complexities despite being fixed-dimensional: an associated decoder maps a code back to a full hierarchy. The learned bidirectional mapping is further tuned using an adversarial setup to yield a generative model of plausible structures, from which novel structures can be sampled. Finally, our structure synthesis framework is augmented by a second trained module that produces fine-grained part geometry, conditioned on global and local structural context, leading to a full generative pipeline for 3D shapes. We demonstrate that without supervision, our network learns meaningful structural hierarchies adhering to perceptual grouping principles, produces compact codes which enable applications such as shape classification and partial matching, and supports shape synthesis and interpolation with significant variations in topology and geometry.Comment: Corresponding author: Kai Xu ([email protected]
    corecore