4,130 research outputs found

    Efficient Computation in Adaptive Artificial Spiking Neural Networks

    Get PDF
    Artificial Neural Networks (ANNs) are bio-inspired models of neural computation that have proven highly effective. Still, ANNs lack a natural notion of time, and neural units in ANNs exchange analog values in a frame-based manner, a computationally and energetically inefficient form of communication. This contrasts sharply with biological neurons that communicate sparingly and efficiently using binary spikes. While artificial Spiking Neural Networks (SNNs) can be constructed by replacing the units of an ANN with spiking neurons, the current performance is far from that of deep ANNs on hard benchmarks and these SNNs use much higher firing rates compared to their biological counterparts, limiting their efficiency. Here we show how spiking neurons that employ an efficient form of neural coding can be used to construct SNNs that match high-performance ANNs and exceed state-of-the-art in SNNs on important benchmarks, while requiring much lower average firing rates. For this, we use spike-time coding based on the firing rate limiting adaptation phenomenon observed in biological spiking neurons. This phenomenon can be captured in adapting spiking neuron models, for which we derive the effective transfer function. Neural units in ANNs trained with this transfer function can be substituted directly with adaptive spiking neurons, and the resulting Adaptive SNNs (AdSNNs) can carry out inference in deep neural networks using up to an order of magnitude fewer spikes compared to previous SNNs. Adaptive spike-time coding additionally allows for the dynamic control of neural coding precision: we show how a simple model of arousal in AdSNNs further halves the average required firing rate and this notion naturally extends to other forms of attention. AdSNNs thus hold promise as a novel and efficient model for neural computation that naturally fits to temporally continuous and asynchronous applications

    Learning long-range spatial dependencies with horizontal gated-recurrent units

    Full text link
    Progress in deep learning has spawned great successes in many engineering applications. As a prime example, convolutional neural networks, a type of feedforward neural networks, are now approaching -- and sometimes even surpassing -- human accuracy on a variety of visual recognition tasks. Here, however, we show that these neural networks and their recent extensions struggle in recognition tasks where co-dependent visual features must be detected over long spatial ranges. We introduce the horizontal gated-recurrent unit (hGRU) to learn intrinsic horizontal connections -- both within and across feature columns. We demonstrate that a single hGRU layer matches or outperforms all tested feedforward hierarchical baselines including state-of-the-art architectures which have orders of magnitude more free parameters. We further discuss the biological plausibility of the hGRU in comparison to anatomical data from the visual cortex as well as human behavioral data on a classic contour detection task.Comment: Published at NeurIPS 2018 https://papers.nips.cc/paper/7300-learning-long-range-spatial-dependencies-with-horizontal-gated-recurrent-unit

    Assessing hyper parameter optimization and speedup for convolutional neural networks

    Get PDF
    The increased processing power of graphical processing units (GPUs) and the availability of large image datasets has fostered a renewed interest in extracting semantic information from images. Promising results for complex image categorization problems have been achieved using deep learning, with neural networks comprised of many layers. Convolutional neural networks (CNN) are one such architecture which provides more opportunities for image classification. Advances in CNN enable the development of training models using large labelled image datasets, but the hyper parameters need to be specified, which is challenging and complex due to the large number of parameters. A substantial amount of computational power and processing time is required to determine the optimal hyper parameters to define a model yielding good results. This article provides a survey of the hyper parameter search and optimization methods for CNN architectures

    Event-Based Angular Velocity Regression with Spiking Networks

    Full text link
    Spiking Neural Networks (SNNs) are bio-inspired networks that process information conveyed as temporal spikes rather than numeric values. A spiking neuron of an SNN only produces a spike whenever a significant number of spikes occur within a short period of time. Due to their spike-based computational model, SNNs can process output from event-based, asynchronous sensors without any pre-processing at extremely lower power unlike standard artificial neural networks. This is possible due to specialized neuromorphic hardware that implements the highly-parallelizable concept of SNNs in silicon. Yet, SNNs have not enjoyed the same rise of popularity as artificial neural networks. This not only stems from the fact that their input format is rather unconventional but also due to the challenges in training spiking networks. Despite their temporal nature and recent algorithmic advances, they have been mostly evaluated on classification problems. We propose, for the first time, a temporal regression problem of numerical values given events from an event camera. We specifically investigate the prediction of the 3-DOF angular velocity of a rotating event camera with an SNN. The difficulty of this problem arises from the prediction of angular velocities continuously in time directly from irregular, asynchronous event-based input. Directly utilising the output of event cameras without any pre-processing ensures that we inherit all the benefits that they provide over conventional cameras. That is high-temporal resolution, high-dynamic range and no motion blur. To assess the performance of SNNs on this task, we introduce a synthetic event camera dataset generated from real-world panoramic images and show that we can successfully train an SNN to perform angular velocity regression

    Strategies for neural networks in ballistocardiography with a view towards hardware implementation

    Get PDF
    A thesis submitted for the degree of Doctor of Philosophy at the University of LutonThe work described in this thesis is based on the results of a clinical trial conducted by the research team at the Medical Informatics Unit of the University of Cambridge, which show that the Ballistocardiogram (BCG) has prognostic value in detecting impaired left ventricular function before it becomes clinically overt as myocardial infarction leading to sudden death. The objective of this study is to develop and demonstrate a framework for realising an on-line BCG signal classification model in a portable device that would have the potential to find pathological signs as early as possible for home health care. Two new on-line automatic BeG classification models for time domain BeG classification are proposed. Both systems are based on a two stage process: input feature extraction followed by a neural classifier. One system uses a principal component analysis neural network, and the other a discrete wavelet transform, to reduce the input dimensionality. Results of the classification, dimensionality reduction, and comparison are presented. It is indicated that the combined wavelet transform and MLP system has a more reliable performance than the combined neural networks system, in situations where the data available to determine the network parameters is limited. Moreover, the wavelet transfonn requires no prior knowledge of the statistical distribution of data samples and the computation complexity and training time are reduced. Overall, a methodology for realising an automatic BeG classification system for a portable instrument is presented. A fully paralJel neural network design for a low cost platform using field programmable gate arrays (Xilinx's XC4000 series) is explored. This addresses the potential speed requirements in the biomedical signal processing field. It also demonstrates a flexible hardware design approach so that an instrument's parameters can be updated as data expands with time. To reduce the hardware design complexity and to increase the system performance, a hybrid learning algorithm using random optimisation and the backpropagation rule is developed to achieve an efficient weight update mechanism in low weight precision learning. The simulation results show that the hybrid learning algorithm is effective in solving the network paralysis problem and the convergence is much faster than by the standard backpropagation rule. The hidden and output layer nodes have been mapped on Xilinx FPGAs with automatic placement and routing tools. The static time analysis results suggests that the proposed network implementation could generate 2.7 billion connections per second performance
    corecore