187 research outputs found

    Weight Distribution for Non-binary Cluster LDPC Code Ensemble

    Get PDF
    In this paper, we derive the average weight distributions for the irregular non-binary cluster low-density parity-check (LDPC) code ensembles. Moreover, we give the exponential growth rate of the average weight distribution in the limit of large code length. We show that there exist (2,dc)(2,d_c)-regular non-binary cluster LDPC code ensembles whose normalized typical minimum distances are strictly positive.Comment: 12pages, 6 figures, To be presented in ISIT2013, Submitted to IEICE Trans. Fundamental

    On a Low-Rate TLDPC Code Ensemble and the Necessary Condition on the Linear Minimum Distance for Sparse-Graph Codes

    Full text link
    This paper addresses the issue of design of low-rate sparse-graph codes with linear minimum distance in the blocklength. First, we define a necessary condition which needs to be satisfied when the linear minimum distance is to be ensured. The condition is formulated in terms of degree-1 and degree-2 variable nodes and of low-weight codewords of the underlying code, and it generalizies results known for turbo codes [8] and LDPC codes. Then, we present a new ensemble of low-rate codes, which itself is a subclass of TLDPC codes [4], [5], and which is designed under this necessary condition. The asymptotic analysis of the ensemble shows that its iterative threshold is situated close to the Shannon limit. In addition to the linear minimum distance property, it has a simple structure and enjoys a low decoding complexity and a fast convergence.Comment: submitted to IEEE Trans. on Communication

    Numerical and analytical bounds on threshold error rates for hypergraph-product codes

    Get PDF
    We study analytically and numerically decoding properties of finite rate hypergraph-product quantum LDPC codes obtained from random (3,4)-regular Gallager codes, with a simple model of independent X and Z errors. Several non-trival lower and upper bounds for the decodable region are constructed analytically by analyzing the properties of the homological difference, equal minus the logarithm of the maximum-likelihood decoding probability for a given syndrome. Numerical results include an upper bound for the decodable region from specific heat calculations in associated Ising models, and a minimum weight decoding threshold of approximately 7%.Comment: 14 pages, 5 figure

    Modern Coding Theory: The Statistical Mechanics and Computer Science Point of View

    Full text link
    These are the notes for a set of lectures delivered by the two authors at the Les Houches Summer School on `Complex Systems' in July 2006. They provide an introduction to the basic concepts in modern (probabilistic) coding theory, highlighting connections with statistical mechanics. We also stress common concepts with other disciplines dealing with similar problems that can be generically referred to as `large graphical models'. While most of the lectures are devoted to the classical channel coding problem over simple memoryless channels, we present a discussion of more complex channel models. We conclude with an overview of the main open challenges in the field.Comment: Lectures at Les Houches Summer School on `Complex Systems', July 2006, 44 pages, 25 ps figure

    Gurafu hyogen o riyoshita ayamari teisei hoshiki no kosei ni kansuru kenkyu

    Get PDF
    制度:新 ; 報告番号:乙2221号 ; 学位の種類:博士(工学) ; 授与年月日:2009/3/24 ; 早大学位記番号:新508
    corecore