6 research outputs found

    Stavovi studenata prema primjeni mobilne proširene stvarnosti u visokom obrazovanju

    Get PDF
    Virtual (VR) and augmented reality (AR) have emerged from the framework of academic and industrial laboratories and have acquired global attention. Currently, the focus shifted from the technologies themselves to finding adequate teaching and learning applications. In this paper, the students\u27 attitudes toward the application of mobile AR (MAR) in higher education (HE) were researched (with a focus on augmented textbooks). The results showed that the students have a mostly positive attitude, and it is concluded that there was no statistically significant difference between the STEM (science, technology, engineering, and mathematics) and non-STEM students\u27 opinions regarding this topic. Based on the results, the further research and integration of this technology into HE settings can be suggested.Virtualna i proširena stvarnost izašle su iz okvira akademskih i industrijskih laboratorija i stekle su globalnu pozornost. Trenutačno se fokus pomaknuo sa samih tehnologija prema pronalaženju odgovarajuće primjene u poučavanju i učenju. U ovom radu istraživani su stavovi studenata o primjeni mobilne proširene stvarnosti u visokom obrazovanju (s naglaskom na augmentiranim udžbenicima). Rezultati su pokazali da studenti imaju uglavnom pozitivan stav, a zaključeno je i da ne postoji statistički značajna razlika u mišljenju između STEM (znanost, tehnologija, inženjerstvo i matematika) i ne-STEM studenata o ovoj temi. Na temelju rezultata istraživanja mogu se predložiti daljnja istraživanja i integracija ove tehnologije u postavke visokog obrazovanja

    Towards Expressive and Versatile Visualization-as-a-Service (VaaS)

    Get PDF
    The rapid growth of data in scientific visualization has posed significant challenges to the scalability and availability of interactive visualization tools. These challenges can be largely attributed to the limitations of traditional monolithic applications in handling large datasets and accommodating multiple users or devices. To address these issues, the Visualization-as-a-Service (VaaS) architecture has emerged as a promising solution. VaaS leverages cloud-based visualization capabilities to provide on-demand and cost-effective interactive visualization. Existing VaaS has been simplistic by design with focuses on task-parallelism with single-user-per-device tasks for predetermined visualizations. This dissertation aims to extend the capabilities of VaaS by exploring data-parallel visualization services with multi-device support and hypothesis-driven explorations. By incorporating stateful information and enabling dynamic computation, VaaS\u27 performance and flexibility for various real-world applications is improved. This dissertation explores the history of monolithic and VaaS architectures, the design and implementations of 3 new VaaS applications, and a final exploration of the future of VaaS. This research contributes to the advancement of interactive scientific visualization, addressing the challenges posed by large datasets and remote collaboration scenarios

    A Survey of Augmented Reality

    Get PDF
    © 2015 M. Billinghurst, A. Clark, and G. Lee. This survey summarizes almost 50 years of research and development in the field of Augmented Reality (AR). From early research in the 1960's until widespread availability by the 2010's there has been steady progress towards the goal of being able to seamlessly combine real and virtual worlds. We provide an overview of the common definitions of AR, and show how AR fits into taxonomies of other related technologies. A history of important milestones in Augmented Reality is followed by sections on the key enabling technologies of tracking, display and input devices. We also review design guidelines and provide some examples of successful AR applications. Finally, we conclude with a summary of directions for future work and a review of some of the areas that are currently being researched

    Keyframe Tagging: Unambiguous Content Delivery for Augmented Reality Environments

    Get PDF
    Context: When considering the use of Augmented Reality to provide navigation cues in a completely unknown environment, the content must be delivered into the environment with a repeatable level of accuracy such that the navigation cues can be understood and interpreted correctly by the user. Aims: This thesis aims to investigate whether a still image based reconstruction of an Augmented Reality environment can be used to develop a content delivery system that providers a repeatable level of accuracy for content placement. It will also investigate whether manipulation of the properties of a Spatial Marker object is sufficient to reduce object selection ambiguity in an Augmented Reality environment. Methods: A series of experiments were conducted to test the separate aspects of these aims. Participants were required to use the developed Keyframe Tagging tool to introduce virtual navigation markers into an Augmented Reality environment, and also to identify objects within an Augmented Reality environment that was signposted using different Virtual Spatial Markers. This tested the accuracy and repeatability of content placement of the approach, while also testing participants’ ability to reliably interpret virtual signposts within an Augmented Reality environment. Finally the Keyframe Tagging tool was tested by an expert user against a pre-existing solution to evaluate the time savings offered by this approach against the overall accuracy of content placement. Results: The average accuracy score for content placement across 20 participants was 64%, categorised as “Good” when compared with an expert benchmark result, while no tags were considered “incorrect” and only 8 from 200 tags were considered to have “Poor” accuracy, supporting the Keyframe Tagging approach. In terms of object identification from virtual cues, some of the predicted cognitive links between virtual marker property and target object did not surface, though participants reliably identified the correct objects across several trials. Conclusions: This thesis has demonstrated that accurate content delivery can be achieved through the use of a still image based reconstruction of an Augmented Reality environment. By using the Keyframe Tagging approach, content can be placed quickly and with a sufficient level of accuracy to demonstrate its utility in the scenarios outlined within this thesis. There are some observable limitations to the approach, which are discussed with the proposals for further work in this area

    A Study on the Use of Ontologies to Represent Collective Knowledge

    Get PDF
    The development of ontologies has become an area of considerable research interest over the past number of years. Domain ontologies are often developed to represent a shared understanding that in turn indicates cooperative effort by a user community. However, the structure and form that an ontology takes is predicated both on the approach of the developer and the cooperation of the user community. A shift has taken place in recent years from the use of highly specialised and expressive ontologies to simpler knowledge models, progressively developed by community contribution. It is within this context that this thesis investigates the use of ontologies as a means to representing collective knowledge. It investigates the impact of the community on the approach to and outcome of knowledge representation and compares the use of simple terminological ontologies with highly structured expressive ontologies in community-based narrative environments

    Adaptivity of 3D web content in web-based virtual museums : a quality of service and quality of experience perspective

    Get PDF
    The 3D Web emerged as an agglomeration of technologies that brought the third dimension to the World Wide Web. Its forms spanned from being systems with limited 3D capabilities to complete and complex Web-Based Virtual Worlds. The advent of the 3D Web provided great opportunities to museums by giving them an innovative medium to disseminate collections' information and associated interpretations in the form of digital artefacts, and virtual reconstructions thus leading to a new revolutionary way in cultural heritage curation, preservation and dissemination thereby reaching a wider audience. This audience consumes 3D Web material on a myriad of devices (mobile devices, tablets and personal computers) and network regimes (WiFi, 4G, 3G, etc.). Choreographing and presenting 3D Web components across all these heterogeneous platforms and network regimes present a significant challenge yet to overcome. The challenge is to achieve a good user Quality of Experience (QoE) across all these platforms. This means that different levels of fidelity of media may be appropriate. Therefore, servers hosting those media types need to adapt to the capabilities of a wide range of networks and devices. To achieve this, the research contributes the design and implementation of Hannibal, an adaptive QoS & QoE-aware engine that allows Web-Based Virtual Museums to deliver the best possible user experience across those platforms. In order to ensure effective adaptivity of 3D content, this research furthers the understanding of the 3D web in terms of Quality of Service (QoS) through empirical investigations studying how 3D Web components perform and what are their bottlenecks and in terms of QoE studying the subjective perception of fidelity of 3D Digital Heritage artefacts. Results of these experiments lead to the design and implementation of Hannibal
    corecore