55 research outputs found

    Free and open source software for geospatial applications (FOSS4G) to support Future Earth

    Get PDF
    The development, integration, and distribution of the information and spatial data infrastructure (i.e. Digital Earth; DE) necessary to support the vision and goals of Future Earth (FE) will occur in a distributed fashion, in very diverse technological, institutional, socio-cultural, and economic contexts around the world. This complex context and ambitious goals require bringing to bear not only the best minds, but also the best science and technologies available. Free and Open Source Software for Geospatial Applications (FOSS4G) offers mature, capable and reliable software to contribute to the creation of this infrastructure. In this paper we point to a selected set of some of the most mature and reliable FOSS4G solutions that can be used to develop the functionality required as part of DE and FE. We provide examples of large-scale, sophisticated, mission-critical applications of each software to illustrate their power and capabilities in systems where they perform roles or functionality similar to the ones they could perform as part of DE and FE. We provide information and resources to assist the readers in carrying out their own assessments to select the best FOSS4G solutions for their particular contexts and system development needs

    Putting the past in place : a conceptual data model for a 4D archaeological GIS

    Get PDF

    Web-Based Management of Public Buildings: A Workflow Based on Integration of BIM and IoT Sensors with a Web–GIS Portal

    Get PDF
    In this paper, we present the final results from the research project “Urban Abacus of Building Energy Performances (Abaco Urbano Energeticodegli Edifci–AUREE)” aimed at supporting the renovation process and energy efficiency enhancement of urban building stocks. The crux of the AUREE project is a Web–GIS GeoBlog portal with customized semantic dashboards aimed at sharing information on an urban built environment and promoting the participation of local stakeholders in its improvement. As the latest development of this research, a workflow that integrates the AUREE portal with BIM authoring and an open-source IoT platform is implemented and applied to an experimental case study concerning a public building in Carbonia (Italy). The headquarters of the Sotacarbo Sustainable Energy Research Center was selected as the case study. The presented results proved that it was possible to create a valid open system, which was accessible to both specialist and unskilled users, and aimed at guiding, through a progressive knowledge deepening, common end-users toward proper conscious “energy behaviors” as well as public administrations and decision-makers toward sustainable facility management. Later, the proposed open system could also be suitable to be used as an effective tool to support the rising “energy communities”

    Proceedings of the 3rd Open Source Geospatial Research & Education Symposium OGRS 2014

    Get PDF
    The third Open Source Geospatial Research & Education Symposium (OGRS) was held in Helsinki, Finland, on 10 to 13 June 2014. The symposium was hosted and organized by the Department of Civil and Environmental Engineering, Aalto University School of Engineering, in partnership with the OGRS Community, on the Espoo campus of Aalto University. These proceedings contain the 20 papers presented at the symposium. OGRS is a meeting dedicated to exchanging ideas in and results from the development and use of open source geospatial software in both research and education.  The symposium offers several opportunities for discussing, learning, and presenting results, principles, methods and practices while supporting a primary theme: how to carry out research and educate academic students using, contributing to, and launching open source geospatial initiatives. Participating in open source initiatives can potentially boost innovation as a value creating process requiring joint collaborations between academia, foundations, associations, developer communities and industry. Additionally, open source software can improve the efficiency and impact of university education by introducing open and freely usable tools and research results to students, and encouraging them to get involved in projects. This may eventually lead to new community projects and businesses. The symposium contributes to the validation of the open source model in research and education in geoinformatics

    ICT enabled participatory urban planning and policy development: The UrbanAPI project

    Get PDF
    Purpose: The aim of this paper is to present the effectiveness of participatory information and communication technology (ICT) tools for urban planning, in particular, supporting bottom-up decision-making in urban management and governance. Design/methodology/approach: This work begins with a presentation on the state of the art literature on the existing participatory approaches and their contribution to urban planning and the policymaking process. Furthermore, a case study, namely, the UrbanAPI project, is selected to identify new visualisation and simulation tools applied at different urban scales. These tools are applied in four different European cities - Vienna, Bologna, Vitoria-Gasteiz and Ruse - with the objective to identify the data needs for application development, commonalities in requirements of such participatory tools and their expected impact in policy and decision-making processes. Findings: The case study presents three planning applications: three-dimensional Virtual Reality at neighbourhood scale, Public Motion Explorer at city-wide scale and Urban Growth Simulation at city-region scale. UrbanAPI applications indicate both active and passive participation secured by applying these tools at different urban scales and hence facilitate evidence-based urban planning decision-making. Structured engagement with the city administrations indicates commonalities in user needs and application requirements creating the potential for the development of generic features in these ICT tools which can be applied to many other cities throughout Europe. Originality/value: This paper presents new ICT-enabled participatory urban planning tools at different urban scales to support collaborative decision-making and urban policy development. Various technologies are used for the development of these IT tools and applied to the real environment of four European cities. © Emerald Group Publishing Limited

    DEVELOPMENT OF A GEODATABASE FOR EFFICIENT REMOTE SENSING DATA MANAGEMENT IN EMERGENCY SCENARIOS

    Get PDF
    Disasters such as floods, large fires, landslides, avalanches, or forest fires are often inevitable and cannot be fully prevented, but their impact can be minimized with sound disaster management strategies aided by the latest technological advancements. A key factor affecting these strategies is the time, because any delay can result in dramatic consequences and potentially human losses. Therefore, a quick geo-situation report of the disaster is highly demanded, but still not an easy task because – in most cases – a priori known spatial information like map data or geodatabases, are outdated, and anyway won’t provide an overview on the current situation. This paper provides an exploratory investigation to be smart in providing correct and timely geodata that can help in emergency cases; especially in support decision making in emergency and risk management. In particular, issues related to geodatabase design and visualization of a variety of geodata available play a key role when it comes to efficient data deployment and usability. To this end, a significant part of this research will be devoted to develop a concept for a geodatabase design and dataset management that helps assessing a disaster risk through a potential provision of data needed. Based on this consideration, the proposed concept is to create multi-disciplinary integrated geodatabases as well as an easy-to-use graphical user interface to access the obtained data. To address this concept, hard- and software solutions are being developed through the joint research project ANKommEn and its extension ANKommEn2. In those projects two automated unmanned systems, that is an aerial UAV (Unmanned Aerial Vehicle) and a ground based UGV (Unmanned Ground Vehicle), are being developed to provide up-to-date information of rescue scenarios. Within this paper, highlights about the two project parts will be briefly presented, and then the current state of the art in geospatial database management, followed by focusing on Postgres-based database management connected with QGIS, and finally current results like a Web Map Service will be discussed

    Multiscale visualization approaches for Volunteered Geographic Information and Location-based Social Media

    Get PDF
    Today, “zoomable” maps are a state-of-the-art way to explore the world, available to anyone with Internet access. However, the process of creating this visualization has been rather loosely investigated and documented. Nevertheless, with an increasing amount of available data, interactive maps have become a more integral approach to visualizing and exploring big datasets and user-generated data. OpenStreetMap and online platforms such as Twitter and Flickr offer application programming interfaces (APIs) with geographic information. They are well-known examples of this visualization challenge and are often used as examples. In addition, an increasing number of public administrations collect open data and publish their data sets, which makes the task of visualization even more relevant. This dissertation deals with the visualization of user-generated geodata as a multiscale map. The basics of today’s multiscale maps—their history, technologies, and possibilities—are explored and abstracted. This work introduces two new multiscale-focused visualization approaches for point data from volunteered geographic information (VGI) and location-based social media (LBSM). One contribution of this effort is a visualization methodology for spatially referenced information in the form of point geometries, using nominally scaled data from social media such as Twitter or Flickr. Typical for this data is a high number of social media posts in different categories—a post on social media corresponds to a point in a specific category. Due to the sheer quantity and similar characteristics, the posts appear generic rather than unique. This type of dataset can be explored using the new method of micro diagrams to visualize the dataset on multiple scales and resolutions. The data is aggregated into small grid cells, and the numerical proportion is shown with small diagrams, which can visually merge into heterogenous areas through colors depicting a specific category. The diagram sizes allow the user to estimate the overall number of aggregated points in a grid cell. A different visualization approach is proposed for more unique points, considered points of interest (POI), based on the selection method. The goal is to identify more locally relevant points from the data set, considered more important compared to other points in the neighborhood, which are then compared by numerical attribute. The method, derived from topographic isolation and called discrete isolation, is the distance from one point to the next with a higher attribute value. By using this measure, the most essential points can be easily selected by choosing a minimum distance and producing a homogenous spatial of the selected points within the chosen dataset. The two newly developed approaches are applied to multiscale mapping by constructing example workflows that produce multiscale maps. The publicly available multiscale mapping workflows OpenMapTiles and OpenStreetMap Carto, using OpenStreetMap data, are systematically explored and analyzed. The result is a general workflow for multiscale map production and a short overview of the toolchain software. In particular, the generalization approaches in the example projects are discussed and these are classified into cartographic theories on the basis of literature. The workflow is demonstrated by building a raster tile service for the micro diagrams and a vector tile service for the discrete isolation, able to be used with just a web browser. In conclusion, these new approaches for point data using VGI and LBSM allow better qualitative visualization of geodata. While analyzing vast global datasets is challenging, exploring and analyzing hidden data patterns is fruitful. Creating this degree of visualization and producing maps on multiple scales is a complicated task. The workflows and tools provided in this thesis will make map production on a worldwide scale easier.:1 Introduction 1 1.1 Motivation .................................................................................................. 3 1.2 Visualization of crowdsourced geodata on multiple scales ............ 5 1.2.1 Research objective 1: Visualization of point collections ......... 6 1.2.2 Research objective 2: Visualization of points of interest ......... 7 1.2.3 Research objective 3: Production of multiscale maps ............. 7 1.3 Reader’s guide ......................................................................................... 9 1.3.1 Structure ........................................................................................... 9 1.3.2 Related Publications ....................................................................... 9 1.3.3 Formatting and layout ................................................................. 10 1.3.4 Online examples ........................................................................... 10 2 Foundations of crowdsourced mapping on multiple scales 11 2.1 Types and properties of crowdsourced data .................................. 11 2.2 Currents trends in cartography ......................................................... 11 2.3 Definitions .............................................................................................. 12 2.3.1 VGI .................................................................................................. 12 2.3.2 LBSM .............................................................................................. 13 2.3.3 Space, place, and location......................................................... 13 2.4 Visualization approaches for crowdsourced geodata ................... 14 2.4.1 Review of publications and visualization approaches ........... 14 2.4.2 Conclusions from the review ...................................................... 15 2.4.3 Challenges mapping crowdsourced data ................................ 17 2.5 Technologies for serving multiscale maps ...................................... 17 2.5.1 Research about multiscale maps .............................................. 17 2.5.2 Web Mercator projection ............................................................ 18 2.5.3 Tiles and zoom levels .................................................................. 19 2.5.4 Raster tiles ..................................................................................... 21 2.5.5 Vector tiles .................................................................................... 23 2.5.6 Tiling as a principle ..................................................................... 25 3 Point collection visualization with categorized attributes 26 3.1 Target users and possible tasks ....................................................... 26 3.2 Example data ......................................................................................... 27 3.3 Visualization approaches .................................................................... 28 3.3.1 Common techniques .................................................................... 28 3.3.2 The micro diagram approach .................................................... 30 3.4 The micro diagram and its parameters ............................................ 33 3.4.1 Aggregating points into a regular structure ............................ 33 3.4.2 Visualizing the number of data points ...................................... 35 3.4.3 Grid and micro diagrams ............................................................ 36 3.4.4 Visualizing numerical proportions with diagrams .................. 37 3.4.5 Influence of color and color brightness ................................... 38 3.4.6 Interaction options with micro diagrams .................................. 39 3.5 Application and user-based evaluation ............................................ 39 3.5.1 Micro diagrams in a multiscale environment ........................... 39 3.5.2 The micro diagram user study ................................................... 41 3.5.3 Point collection visualization discussion .................................. 47 4 Selection of POIs for visualization 50 4.1 Approaches for point selection .......................................................... 50 4.2 Methods for point selection ................................................................ 51 4.2.1 Label grid approach .................................................................... 52 4.2.2 Functional importance approach .............................................. 53 4.2.3 Discrete isolation approach ....................................................... 54 4.3 Functional evaluation of selection methods .................................... 56 4.3.1 Runtime comparison .................................................................... 56 4.3.2 Use cases for discrete isolation ................................................ 57 4.4 Discussion of the selection approaches .......................................... 61 4.4.1 A critical view of the use cases ................................................. 61 4.4.2 Comparing the approaches ........................................................ 62 4.4.3 Conclusion ..................................................................................... 64 5 Creating multiscale maps 65 5.1 Examples of multiscale map production .......................................... 65 5.1.1 OpenStreetMap Infrastructure ................................................... 66 5.1.2 OpenStreetMap Carto ................................................................. 67 5.1.3 OpenMapTiles ............................................................................... 73 5.2 Methods of multiscale map production ............................................ 80 5.2.1 OpenStreetMap tools ................................................................... 80 5.2.2 Geoprocessing .............................................................................. 80 5.2.3 Database ........................................................................................ 80 5.2.4 Creating tiles ................................................................................. 82 5.2.5 Caching .......................................................................................... 82 5.2.6 Styling tiles .................................................................................... 82 5.2.7 Viewing tiles ................................................................................... 83 5.2.8 The stackless approach to tile creation ................................... 83 5.3 Example workflows for creating multiscale maps ........................... 84 5.3.1 Raster tiles: OGC services and micro diagrams .................... 84 5.3.2 Vector tiles: Slippy map and vector tiles ................................. 87 5.4 Discussion of approaches and workflows ....................................... 90 5.4.1 Map production as a rendering pipeline .................................. 90 5.4.2 Comparison of OpenStreetMap Carto and OpenMapTiles .. 92 5.4.3 Discussion of the implementations ........................................... 93 5.4.4 Generalization in map production workflows .......................... 95 5.4.5 Conclusions ................................................................................. 101 6 Discussion 103 6.1 Development for web mapping ........................................................ 103 6.1.1 The role of standards in map production .............................. 103 6.1.2 Technological development ..................................................... 103 6.2 New data, new mapping techniques? ............................................. 104 7 Conclusion 106 7.1 Visualization of point collections ..................................................... 106 7.2 Visualization of points of interest ................................................... 107 7.3 Production of multiscale maps ........................................................ 107 7.4 Synthesis of the research questions .............................................. 108 7.5 Contributions ....................................................................................... 109 7.6 Limitations ............................................................................................ 110 7.7 Outlook ................................................................................................. 111 8 References 113 9 Appendix 130 9.1 Zoom levels and Scale ...................................................................... 130 9.3 Full information about selected UGC papers ................................ 131 9.4 Timeline of mapping technologies .................................................. 133 9.5 Timeline of map providers ................................................................ 133 9.6 Code snippets from own map production workflows .................. 134 9.6.1 Vector tiles workflow ................................................................. 134 9.6.2 Raster tiles workflow.................................................................. 137Heute sind zoombare Karten Alltag für jeden Internetznutzer. Die Erstellung interaktiv zoombarer Karten ist allerdings wenig erforscht, was einen deutlichen Gegensatz zu ihrer aktuellen Bedeutung und Nutzungshäufigkeit darstellt. Die Forschung in diesem Bereich ist also umso notwendiger. Steigende Datenmengen und größere Regionen, die von Karten abgedeckt werden sollen, unterstreichen den Forschungsbedarf umso mehr. Beispiele für stetig wachsende Datenmengen sind Geodatenquellen wie OpenStreetMap aber auch freie amtliche Geodatensätze (OpenData), aber auch die zunehmende Zahl georeferenzierter Inhalte auf Internetplatformen wie Twitter oder Flickr zu nennen. Das Thema dieser Arbeit ist die Visualisierung eben dieser nutzergenerierten Geodaten mittels zoombarer Karten. Dafür wird die Entwicklung der zugrundeliegenden Technologien über die letzten zwei Jahr-zehnte und die damit verbundene Möglichkeiten vorgestellt. Weitere Beiträge sind zwei neue Visualisierungsmethoden, die sich besonders für die Darstellung von Punktdaten aus raumbezogenen nutzergenerierten Daten und georeferenzierte Daten aus Sozialen Netzwerken eignen. Ein Beitrag dieser Arbeit ist eine neue Visualisierungsmethode für raumbezogene Informationen in Form von Punktgeometrien mit nominal skalierten Daten aus Sozialen Medien, wie beispielsweise Twitter oder Flickr. Typisch für diese Daten ist eine hohe Anzahl von Beiträgen mit unterschiedlichen Kategorien. Wobei die Beiträge, bedingt durch ihre schiere Menge und ähnlicher Ei-genschaften, eher generisch als einzigartig sind. Ein Beitrag in den So-zia len Medien entspricht dabei einem Punkt mit einer bestimmten Katego-rie. Ein solcher Datensatz kann mit der neuen Methode der „micro diagrams“ in verschiedenen Maßstäben und Auflösungen visualisiert und analysiert werden. Dazu werden die Daten in kleine Gitterzellen aggregiert. Die Menge und Verteilung der über die Kategorien aggregierten Punkte wird durch kleine Diagramme dargestellt, wobei die Farben die verschiedenen Kategorien visualisieren. Durch die geringere Größe der einzelnen Diagramme verschmelzen die kleinen Diagramme visuell, je nach der Verteilung der Farben für die Kategorien. Bei genauerem Hinsehen ist die Schätzung der Menge der aggregierten Punkte über die Größe der Diagramme die Menge und die Verteilung über die Kategorien möglich. Für einzigartigere Punkte, die als Points of Interest (POI) angesehen werden, wird ein anderer Visualisierungsansatz vorgeschlagen, der auf einer Auswahlmethode basiert. Ziel ist es dabei lokal relevantere Punkte aus dem Datensatz zu identifizieren, die im Vergleich zu anderen Punkten in der Nachbarschaft des Punktes verglichen nach einem numerischen Attribut wichtiger sind. Die Methode ist von dem geographischen Prinzip der Dominanz von Bergen abgeleitet und wird „discrete isolation“ genannt. Es handelt sich dabei um die Distanz von einem Punkt zum nächsten mit einem höheren Attributwert. Durch die Verwendung dieses Maßes können lokal bedeutende Punkte leicht ausgewählt werden, indem ein minimaler Abstand gewählt und so räumlich gleichmäßig verteilte Punkte aus dem Datensatz ausgewählt werden. Die beiden neu vorgestellten Methoden werden in den Kontext der zoombaren Karten gestellt, indem exemplarische Arbeitsabläufe erstellt werden, die als Er-gebnis eine zoombare Karte liefern. Dazu werden die frei verfügbaren Beispiele zur Herstellung von weltweiten zoombaren Karten mit nutzergenerierten Geo-daten von OpenStreetMap, anhand der Kartenprojekte OpenMapTiles und O-penStreetMap Carto analysiert und in Arbeitsschritte gegliedert. Das Ergebnis ist ein wiederverwendbarer Arbeitsablauf zur Herstellung zoombarer Karten, ergänzt durch eine Auswahl von passender Software für die einzelnen Arbeits-schritte. Dabei wird insbesondere auf die Generalisierungsansätze in den Beispielprojekten eingegangen und diese anhand von Literatur in die kartographische Theorie eingeordnet. Zur Demonstration des Workflows wird je ein Raster Tiles Dienst für die „micro diagrams“ und ein Vektor Tiles Dienst für die „discrete isolation“ erstellt. Beide Dienste lassen sich mit einem aktuellen Webbrowser nutzen. Zusammenfassend ermöglichen diese neuen Visualisierungsansätze für Punkt-daten aus VGI und LBSM eine bessere qualitative Visualisierung der neuen Geodaten. Die Analyse riesiger globaler Datensätze ist immer noch eine Herausforderung, aber die Erforschung und Analyse verborgener Muster in den Daten ist lohnend. Die Erstellung solcher Visualisierungen und die Produktion von Karten in verschiedenen Maßstäben ist eine komplexe Aufgabe. Die in dieser Arbeit vorgestellten Arbeitsabläufe und Werkzeuge erleichtern die Erstellung von Karten in globalem Maßstab.:1 Introduction 1 1.1 Motivation .................................................................................................. 3 1.2 Visualization of crowdsourced geodata on multiple scales ............ 5 1.2.1 Research objective 1: Visualization of point collections ......... 6 1.2.2 Research objective 2: Visualization of points of interest ......... 7 1.2.3 Research objective 3: Production of multiscale maps ............. 7 1.3 Reader’s guide ......................................................................................... 9 1.3.1 Structure ........................................................................................... 9 1.3.2 Related Publications ....................................................................... 9 1.3.3 Formatting and layout ................................................................. 10 1.3.4 Online examples ........................................................................... 10 2 Foundations of crowdsourced mapping on multiple scales 11 2.1 Types and properties of crowdsourced data .................................. 11 2.2 Currents trends in cartography ......................................................... 11 2.3 Definitions .............................................................................................. 12 2.3.1 VGI .................................................................................................. 12 2.3.2 LBSM .............................................................................................. 13 2.3.3 Space, place, and location......................................................... 13 2.4 Visualization approaches for crowdsourced geodata ................... 14 2.4.1 Review of publications and visualization approaches ........... 14 2.4.2 Conclusions from the review ...................................................... 15 2.4.3 Challenges mapping crowdsourced data ................................ 17 2.5 Technologies for serving multiscale maps ...................................... 17 2.5.1 Research about multiscale maps .............................................. 17 2.5.2 Web Mercator projection ............................................................ 18 2.5.3 Tiles and zoom levels .................................................................. 19 2.5.4 Raster tiles ..................................................................................... 21 2.5.5 Vector tiles .................................................................................... 23 2.5.6 Tiling as a principle ..................................................................... 25 3 Point collection visualization with categorized attributes 26 3.1 Target users and possible tasks ....................................................... 26 3.2 Example data ......................................................................................... 27 3.3 Visualization approaches .................................................................... 28 3.3.1 Common techniques .................................................................... 28 3.3.2 The micro diagram approach .................................................... 30 3.4 The micro diagram and its parameters ............................................ 33 3.4.1 Aggregating points into a regular structure ............................ 33 3.4.2 Visualizing the number of data points ...................................... 35 3.4.3 Grid and micro diagrams ............................................................ 36 3.4.4 Visualizing numerical proportions with diagrams .................. 37 3.4.5 Influence of color and color brightness ................................... 38 3.4.6 Interaction options with micro diagrams .................................. 39 3.5 Application and user-based evaluation ............................................ 39 3.5.1 Micro diagrams in a multiscale environment ........................... 39 3.5.2 The micro diagram user study ................................................... 41 3.5.3 Point collection vis

    Integrating Blue Energy in Maritime Spatial Planning of Mediterranean Regions

    Get PDF
    Blue Energy (BE) is expected to play a strategic role in the energy transition of Europe, particularly toward the 2050 horizon. It refers to a set of Marine Energy Sources (MES), including offshore wind, waves, tides, marine currents, sea thermal energy, salinity gradients, and marine biomass, which are exploited by different BE technologies. Nevertheless, the implementation of integrated solutions to exploit MES in marine areas does not just concern technological issues; it requires inclusive planning practices considering different aspects regarding climate and environmental impacts, landscape compatibility, interference with other marine activities (such as shipping, fishing, and tourism), and social acceptance. A replicable BE planning framework has been developed based on interdisciplinary knowledge in three Mediterranean sites in Greece, Croatia, and Cyprus, under the scope of the Interreg Med BLUE DEAL project. It has been implemented by some interdisciplinary experts through a collaborative and iterative process of data elaboration, mapping, evaluation, and visualization. Results concern the localization of suitable sites to install BE plants and the estimation of potential energy production and avoided emissions in selected scenarios. Together with visual simulations, this study shows the potential effects of the implementation of BE in specific marine areas, with a special focus on the most promising offshore floating wind farms and wave energy converters (WECs), as basic information for participative design and stakeholder engagement initiatives, including public authorities, businesses, and citizens

    Spatio-Temporal Data Handling for Generic Mobile Geoinformation Systems

    Get PDF
    Within this thesis, a workflow for an efficient and practical handling of spatio-temporal data is presented. This workflow consists of three layered parts. The first part is the efficient management of spatio-temporal data. The second part focuses on the development of Web services for the dissemination of spatio-temporal data. The third part is a generic mobile GIS for professional users as a typical application for the spatio-temporal data management model and the related Web services
    • …
    corecore