12 research outputs found

    The Gateway System: Uniform Web Based Access to Remote Resources

    Get PDF
    Exploiting our experience developing the WebFlow system, we designed the Gateway system to provide seamless and secure access to computational resources at ASC MSRC. The Gateway follows our commodity components strategy, and it is implemented as a modern three-tier system. Tier 1 is a high-level front-end for visual programming, steering, run-time data analysis and visualization, built on top of the Web and OO commodity standards. Distributed object-based, scalable, and reusable Web server and Object broker middleware forms Tier 2. Back-end services comprise Tier 3. In particular, access to high performance computational resources is provided by implementing the emerging standard for metacomputing API

    WebFlow - A Visual Programming Paradigm for Web/Java Based Coarse Grain Distributed Computing

    Get PDF
    We present here the recent work at NPAC aimed at developing WebFlow---a general purpose Web based visual interactive programming environment for coarse grain distributed computing. We follow the 3-tier architecture with the central control and integration WebVM layer in tier-2, interacting with the visual graph editor applets in tier-1 (front-end) and the legacy systems in tier-3. WebVM is given by a mesh of Java Web servers such as Jeeves from JavaSoft or Jigsaw from MIT/W3C. All system control structures are implemented as URL-addressable servlets which enable Web browser-based authoring, monitoring, publication, documentation and software distribution tools for distributed computing. We view WebFlow/WEbVM as a promising programming paradigm and coordination model for the exploding volume of Web/Java software, and we illustrate it in a set of ongoing application development activities

    Building Distributed Systems for the Pragmatic Object Web

    Get PDF
    We review the growing power and capability of commodity computing and communication technologies largely driven by commercial distributed information systems. These systems are built from CORBA, Microsoft\u27s COM, JavaBeans, and rapidly advancing Web approaches. One can abstract these to a three-tier model with largely independent clients connected to a distributed network of servers. The latter host various services including object and relational databases and of course parallel and sequential computing. High performance can be obtained by combining concurrency at the middle server tier with optimized parallel back end services. The resultant system combines the needed performance for large-scale HPCC applications with the rich functionality of commodity systems. Further the architecture with distinct interface, server and specialized service implementation layers, naturally allows advances in each area to be easily incorporated. We illustrate how performance can be obtained within a commodity architecture and we propose a middleware integration approach based on JWORB (Java Web Object Broker) multi-protocol server technology. We illustrate our approach on a set of prototype applications in areas such as collaborative systems, support of multidisciplinary interactions, WebFlow based visual metacomputing, WebFlow over Globus, Quantum Monte Carlo and distributed interactive simulations

    JWORB - Java Web Object Request Broker for Commodity Software based Visual Data ow Metacomputing Programming Environment

    Get PDF
    Programming environments and tools that are simultaneously sustainable, highly functional, robust and easy to use have been hard to come by in the HPDC area. This is partially due to the difficulty in developing sophisticated customized systems for what is relatively small part of the worldwide computing enterprise. As the commodity software becomes naturally distributed with the onset of Web and Intranets, we observe now a new trend in HPDC community [1, 8, 12] to base high performance computing on the modern enterprise computing technologies. .. JWORB is a multi-protocol Java server under development at NPAC, currently capable of handling HTTP and IIOP protocols. Hence, JWORB can be viewed as a Java-based Web Server which can also act as a BORBA broker. We present here JWORB rationale, architecture implementation status, results of early performance measurements and we illustrate its role in the new WebFlow system under development

    SNAP, Crackle, WebWindows!

    Get PDF
    We elaborate the SNAP---Scalable (ATM) Network and (PC) Platforms---view of computing in the year 2000. The World Wide Web will continue its rapid evolution, and in the future, applications will not be written for Windows NT/95 or UNIX, but rather for WebWindows with interfaces defined by the standards of Web servers and clients. This universal environment will support WebTop productivity tools, such as WebWord, WebLotus123, and WebNotes built in modular dynamic fashion, and undermining the business model for large software companies. We define a layered WebWindows software architecture in which applications are built on top of multi-use services. We discuss examples including business enterprise systems (IntraNets), health care, financial services and education. HPCC is implicit throughout this discussion for there is no larger parallel system than the World Wide metacomputer. We suggest building the MPP programming environment in terms of pervasive sustainable WebWindows technologies. In particular, WebFlow will support naturally dataflow integrating data and compute intensive applications on distributed heterogeneous systems

    Pegasus: A Framework for Mapping Complex Scientific Workflows onto Distributed Systems

    Get PDF

    Estrategias de descomposición en dominios para entornos Grid

    Get PDF
    En este trabajo estamos interesados en realizar simulaciones numéricas basadas en elementos finitos con integración explícita en el tiempo utilizando la tecnología Grid.Actualmente, las simulaciones explícitas de elementos finitos usan la técnica de descomposición en dominios con particiones balanceadas para realizar la distribución de los datos. Sin embargo, esta distribución de los datos presenta una degradación importante del rendimiento de las simulaciones explícitas cuando son ejecutadas en entornos Grid. Esto se debe principalmente, a que en un ambiente Grid tenemos comunicaciones heterogéneas, muy rápidas dentro de una máquina y muy lentas fuera de ella. De esta forma, una distribución balanceada de los datos se ejecuta a la velocidad de las comunicaciones más lentas. Para superar este problema proponemos solapar el tiempo de la comunicación remota con el tiempo de cálculo. Para ello, dedicaremos algunos procesadores a gestionar las comunicaciones más lentas, y el resto, a realizar cálculo intensivo. Este esquema de distribución de los datos, requiere que la descomposición en dominios sea no balanceada, para que, los procesadores dedicados a realizar la gestión de las comunicaciones lentas tengan apenas carga computacional. En este trabajo se han propuesto y analizado diferentes estrategias para distribuir los datos y mejorar el rendimiento de las aplicaciones en entornos Grid. Las estrategias de distribución estáticas analizadas son: 1. U-1domains: Inicialmente, el dominio de los datos es dividido proporcionalmente entre las máquinas dependiendo de su velocidad relativa. Posteriormente, en cada máquina, los datos son divididos en nprocs-1 partes, donde nprocs es el número de procesadores total de la máquina. Cada subdominio es asignado a un procesador y cada máquina dispone de un único procesador para gestionar las comunicaciones remotas con otras máquinas. 2. U-Bdomains: El particionamiento de los datos se realiza en dos fases. La primera fase es equivalente a la realizada para la distribución U-1domains. La segunda fase, divide, proporcionalmente, cada subdominio de datos en nprocs-B partes, donde B es el número de comunicaciones remotas con otras máquinas (dominios especiales). Cada máquina tiene más de un procesador para gestionar las comunicaciones remotas. 3. U-CBdomains: En esta distribución, se crean tantos dominios especiales como comunicaciones remotas. Sin embargo, ahora los dominios especiales son asignados a un único procesador dentro de la máquina. De esta forma, cada subdomino de datos es dividido en nprocs-1 partes. La gestión de las comunicaciones remotas se realiza concurrentemente mediante threads. Para evaluar el rendimiento de las aplicaciones sobre entornos Grid utilizamos Dimemas. Para cada caso, evaluamos el rendimiento de las aplicaciones en diferentes entornos y tipos de mallas. Los resultados obtenidos muestran que:· La distribución U-1domains reduce los tiempos de ejecución hasta un 45% respecto a la distribución balanceada. Sin embargo, esta distribución no resulta efectiva para entornos Grid compuestos de una gran cantidad de máquinas remotas.· La distribución U-Bdomains muestra ser más eficiente, ya que reduce el tiempo de ejecución hasta un 53%. Sin embargo, la escalabilidad de ésta distribución es moderada, debido a que puede llegar a tener un gran número de procesadores que no realizan cálculo intensivo. Estos procesadores únicamente gestionan las comunicaciones remotas. Como limite sólo podemos aplicar esta distribución si más del 50% de los procesadores en una máquina realizan cálculo.· La distribución U-CBdomains reduce los tiempos de ejecución hasta 30%, pero no resulta tan efectiva como la distribución U-Bdomains. Sin embargo, esta distribución incrementa la utilización de los procesadores en 50%, es decir que disminuye los procesadores ociosos

    Frameworks for enhancing temporal interface behaviour through software architectural design

    Get PDF
    The work reported in this thesis is concerned with understanding aspects of temporal behaviour. A large part of the thesis is based on analytical studies of temporal properties and interface and architectural concerns. The main areas covered include: i. analysing long-term human processes and the impact of interruptions and delays ii. investigating how infrastructures can be designed to support synchronous fast pace activity iii.design of the Getting-to-Know (GtK) experimental notification server The work is motivated by the failure of many collaborative systems to effectively manage the temporal behaviour at the interface level, as they often assume that the interaction is taking place over fast, reliable local area networks. However, the Web has challenged this assumption and users are faced with frequent network-related delays. The nature of cooperative work increases the importance of timing issues. Collaborative users require both rapid feedback of their own actions and timely feedthrough of other actions. Although it may appear that software architectures are about the internals of system design and not a necessary concern for the user interface, internal details do show up at the surface in non-functional aspects, such as timing. The focus of this work is on understanding the behavioural aspects and how they are influenced by the infrastructure. The thesis has contributed to several areas of research: (a)the study of long-term work processes generated a trigger analysis technique for task decomposition in HCI (b)the analysis of architectures was later applied to investigate architectural options for mobile interfaces (c)the framework for notification servers commenced a design vocabulary in CSCW for the implementation of notification services, with the aim of improving design (d)the impedance matching framework facilitate both goal-directed feedthrough and awareness In particular, (c) and (d) have been exercised in the development of the GtK separable notification server

    WebFlow - High-Level Programming Environment and Visual Authoring Toolkit for High Performance Distributed Computing

    No full text
    corecore