26,375 research outputs found

    Discriminating small wooded elements in rural landscape from aerial photography: a hybrid pixel/object-based analysis approach

    Get PDF
    While small, fragmented wooded elements do not represent a large surface area in agricultural landscape, their role in the sustainability of ecological processes is recognized widely. Unfortunately, landscape ecology studies suffer from the lack of methods for automatic detection of these elements. We propose a hybrid approach using both aerial photographs and ancillary data of coarser resolution to automatically discriminate small wooded elements. First, a spectral and textural analysis is performed to identify all the planted-tree areas in the digital photograph. Secondly, an object-orientated spatial analysis using the two data sources and including a multi-resolution segmentation is applied to distinguish between large and small woods, copses, hedgerows and scattered trees. The results show the usefulness of the hybrid approach and the prospects for future ecological applications

    Remotely sensed image fast classification and smart thematic map production

    Get PDF
    Apps available for Smartphone, as well as software for GNSS/GIS devices, permit to easily mapping the localization and shape of an area by acquiring the vertices coordinates of its contour. This option is useful for remote sensing classification, supporting the detection of representative sample sites of a known cover type to use for algorithm training or to test classification results. This article aims to analyse the possibility to produce smart maps from remotely sensed image classification in rapid way: The attention is focalized on different methods that are compared to identify fast and accurate procedure for producing up-To-date and reliable maps. Landsat 8 OLI multispectral images of northern Sicily (Italy) are submitted to various classification algorithms to distinguish water, bare soil and vegetation. The resulting map is useful for many purposes: Appropriately inserted in a larger database aimed at representing the situation in a space-Time evolutionary scenario, it is suitable whenever you want to capture the variation induced in a scene, e.g. burnt areas identification, vegetated areas definition for tourist-recreational purposes, etc. Particularly, pixel-based classification approaches are preferred, and experiments are carried out using unsupervised (k-means), vegetation index (NDVI, Normalized Difference Vegetation Index), supervised (minimum distance, maximum likelihood) methods. Using test sites, confusion matrix is built for each method, and quality indices are calculated to compare the results. Experiments demonstrate that NDVI submitted to k-means algorithm allows the best performance for distinguishing not only vegetation areas but also water bodies and bare soils. The resulting thematic map is converted for web publishing

    REMOTELY SENSED IMAGE FAST CLASSIFICATION AND SMART THEMATIC MAP PRODUCTION

    Get PDF
    Abstract. Apps available for Smartphone, as well as software for GNSS/GIS devices, permit to easily mapping the localization and shape of an area by acquiring the vertices coordinates of its contour. This option is useful for remote sensing classification, supporting the detection of representative sample sites of a known cover type to use for algorithm training or to test classification results. This article aims to analyse the possibility to produce smart maps from remotely sensed image classification in rapid way: the attention is focalized on different methods that are compared to identify fast and accurate procedure for producing up-to-date and reliable maps. Landsat 8 OLI multispectral images of northern Sicily (Italy) are submitted to various classification algorithms to distinguish water, bare soil and vegetation. The resulting map is useful for many purposes: appropriately inserted in a larger database aimed at representing the situation in a space-time evolutionary scenario, it is suitable whenever you want to capture the variation induced in a scene, e.g. burnt areas identification, vegetated areas definition for tourist-recreational purposes, etc. Particularly, pixel-based classification approaches are preferred, and experiments are carried out using unsupervised (k-means), vegetation index (NDVI, Normalized Difference Vegetation Index), supervised (minimum distance, maximum likelihood) methods. Using test sites, confusion matrix is built for each method, and quality indices are calculated to compare the results. Experiments demonstrate that NDVI submitted to k-means algorithm allows the best performance for distinguishing not only vegetation areas but also water bodies and bare soils. The resulting thematic map is converted for web publishing

    Crisis Analytics: Big Data Driven Crisis Response

    Get PDF
    Disasters have long been a scourge for humanity. With the advances in technology (in terms of computing, communications, and the ability to process and analyze big data), our ability to respond to disasters is at an inflection point. There is great optimism that big data tools can be leveraged to process the large amounts of crisis-related data (in the form of user generated data in addition to the traditional humanitarian data) to provide an insight into the fast-changing situation and help drive an effective disaster response. This article introduces the history and the future of big crisis data analytics, along with a discussion on its promise, challenges, and pitfalls
    • …
    corecore